12.△ABC中,B(-4,0),C(4,0),AB+AC=10,則頂點A的軌跡方程是( 。
A.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(x≠±3)B.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(x≠±5)
C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1(x≠±3)D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1(x≠±5)

分析 根據(jù)|AB|+|AC|=10>8=|BC|,可知點A的軌跡是以B,C為焦點的橢圓,從而可假設(shè)橢圓的標準方程,進而可求橢圓的標準方程.

解答 解:∵△ABC中,B(-4,0),C(4,0),AB+AC=10,
∴|BC|=8
∵|AB|+|AC|=10>8=|BC|
∴點A的軌跡是以B,C為焦點的橢圓,a=5,c=4,則b=3,
所求橢圓方程為:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$,x≠±5.
故選:B.

點評 本題的考點是橢圓的定義,橢圓的簡單性質(zhì)的應(yīng)用,曲線與方程的關(guān)系,解題的關(guān)鍵是確定點A的軌跡是以B,C為焦點的橢圓.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)在定義域(0,+∞)內(nèi)恒滿足:①f(x)>0;②2f(x)<xf′(x)<3f(x),其中f′(x)為f(x)的導(dǎo)函數(shù),則( 。
A.$\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$B.$\frac{1}{16}$<$\frac{f(1)}{f(2)}$<$\frac{1}{8}$C.$\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$D.$\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知集合A={x|log2(x+1)>0},B={x|0<x<1},則∁AB=( 。
A.(0,1)B.(0,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=x-alnx.
(Ⅰ)當a=3時,判斷函數(shù)f(x)零點的個數(shù);
(Ⅱ)設(shè)函數(shù)g(x)=$\frac{1-a}{2}$x2-f(x)且a<1,試確定g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設(shè)命題p:方程x2+y2-2x-4y+m=0表示的曲線是一個圓;
命題q:方程$\frac{{x}^{2}}{m-6}$-$\frac{{y}^{2}}{m+3}$=1所表示的曲線是雙曲線,若“p∧q”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在空間四面體EFGH中,點I是面FGH的重心,則$\overrightarrow{EI}$=( 。
A.$\frac{1}{2}$$\overrightarrow{EF}$+$\frac{1}{2}$$\overrightarrow{EG}$+$\frac{1}{2}$$\overrightarrow{EH}$B.$\frac{1}{5}$$\overrightarrow{EF}$+$\frac{1}{5}$$\overrightarrow{EG}$+$\frac{1}{5}$$\overrightarrow{EH}$C.$\frac{1}{4}$$\overrightarrow{EF}$+$\frac{1}{4}$$\overrightarrow{EG}$+$\frac{1}{4}$$\overrightarrow{EH}$D.$\frac{1}{3}$$\overrightarrow{EF}$+$\frac{1}{3}$$\overrightarrow{EG}$+$\frac{1}{3}$$\overrightarrow{EH}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.數(shù)列-1,3,-5,7,-9,…的一個通項公式為(  )
A.an=2n-1B.an=(-1)n(1-2n)C.an=(-1)n(2n-1)D.an(-1)n+1(2n-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)$f(x)={(\frac{1}{2})^x}$-tan2x,則f(x)在[0,2π]上的零點個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某企業(yè)第三年的產(chǎn)量比第一年的產(chǎn)量增加44%,若每年的平均增長率相同(設(shè)為x),則以下結(jié)論正確的是( 。
A.x>22%B.x<22%C.x=22%D.以上都不對

查看答案和解析>>

同步練習冊答案