【題目】某學(xué)校高二年級的第二學(xué)期,因某學(xué)科的任課教師王老師調(diào)動工作,于是更換了另一名教師趙老師繼任.第二學(xué)期結(jié)束后從全學(xué)年的該門課的學(xué)生考試成績中用隨機抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如下:

學(xué)校秉持均衡發(fā)展、素質(zhì)教育的辦學(xué)理念,對教師的教學(xué)成績實行績效考核,績效考核方案規(guī)定:每個學(xué)期的學(xué)生成績中與其中位數(shù)相差在范圍內(nèi)(含)的為合格,此時相應(yīng)的給教師賦分為1分;與中位數(shù)之差大于10的為優(yōu)秀,此時相應(yīng)的給教師賦分為2分;與中位數(shù)之差小于-10的為不合格,此時相應(yīng)的給教師賦分為-1分.

(Ⅰ)問王老師和趙老師的教學(xué)績效考核平均成績哪個大?

(Ⅱ)是否有的把握認為“學(xué)生成績?nèi)〉脙?yōu)秀與更換老師有關(guān)”.

附:

0.050

0.010

0.001

3.841

6.635

10.828

【答案】(Ⅰ)王老師;(Ⅱ)沒有.

【解析】

(Ⅰ)分別計算王老師和趙老師績效考核的平均成績,進行比較即可;(Ⅱ)完成列聯(lián)表,計算的值,利用獨立性檢驗的知識進行判斷即可.

(Ⅰ)第一學(xué)期的數(shù)據(jù)為:

43,44,49,52,53,56,57,59,62,64,65,65,65,68,72,73,75,76,78,83,84,87,88,93,95,

其“中位數(shù)”為65,優(yōu)秀有8個,合格有12個,不合格有5個.

∴王老師的教學(xué)績效考核平均成績?yōu)椋?/span>;

第二學(xué)期的數(shù)據(jù)為:

44,49,52,54,54,58,59,60,61,62,63,63,65,66,67,70,71,72,72,73,77,81,88,88,94,

其“中位數(shù)”為65,優(yōu)秀有5個,合格有15個,不合格有5個,

∴趙老師的教學(xué)績效考核平均成績?yōu)椋?/span>,

,所以,王老師的教學(xué)績效考核平均成績較大;

(Ⅱ)由題意得:

第一學(xué)期

第二學(xué)期

合計

優(yōu)秀

8

5

13

非優(yōu)秀

17

20

37

合計

25

25

50

,

,∴沒有的把握認為“學(xué)生成績優(yōu)秀與更換老師有關(guān)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點為別為F1、F2,且過點

1)求橢圓的標準方程;

2)如圖,點A為橢圓上一位于x軸上方的動點,AF2的延長線與橢圓交于點B,AO的延長線與橢圓交于點C,求ABC面積的最大值,并寫出取到最大值時直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)戶計劃種植萵筍和西紅柿,種植面積不超過畝,投入資金不超過萬元,假設(shè)種植萵筍和西紅柿的產(chǎn)量、成本和售價如下表:

年產(chǎn)量/畝

年種植成本/畝

每噸售價

萵筍

5噸

1萬元

0.5萬元

西紅柿

4.5噸

0.5萬元

0.4萬元

那么,該農(nóng)戶一年種植總利潤(總利潤=總銷售收入-總種植成本)的最大值為____萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展業(yè)務(wù),某調(diào)研組對,兩個公司的產(chǎn)品需求量進行調(diào)研,準備從國內(nèi)個人口超過萬的超大城市和)個人口低于萬的小城市隨機抽取若干個進行統(tǒng)計,若一次抽取個城市,全是小城市的概率為.

(1)求的值;

(2)若一次抽取個城市,則:①假設(shè)取出小城市的個數(shù)為,求的分布列和期望;

②若取出的個城市是同一類城市,求全為超大城市的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是函數(shù)(其中常數(shù))圖象上的兩個動點,點,若的最小值為0,則函數(shù)的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程是 (為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.

(Ⅰ)求曲線的普通方程與直線的直角坐標方程;

(Ⅱ)已知直線與曲線交于, 兩點,與軸交于點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個平面垂直,下列命題

①一個平面內(nèi)已知直線必垂直于另一個平面內(nèi)的任意一條直線

②一個平面內(nèi)的已知直線必垂直于另一個平面的無數(shù)條直線

③一個平面內(nèi)的任一條直線必垂直于另一個平面

④過一個平面內(nèi)任意一點作交線的垂線,則此垂線必垂直于另一個平面

其中不正確命題的個數(shù)是(

A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面平面、均為等邊三角形,的中點,點.

1)求證:平面平面

2)若點是線段的中點,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若,,求函數(shù)的極值;

(2)若是函數(shù)的一個極值點,試求出關(guān)于的關(guān)系式(即用表示),并確定的單調(diào)區(qū)間;(提示:應(yīng)注意對的取值范圍進行討論)

(3)在(2)的條件下,設(shè),函數(shù),若存在使得成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案