【題目】已知無窮數(shù)列的前n項和為,記, ,…, 中奇數(shù)的個數(shù)為.
(Ⅰ)若= n,請寫出數(shù)列的前5項;
(Ⅱ)求證:"為奇數(shù), (i = 2,3,4,...)為偶數(shù)”是“數(shù)列是單調(diào)遞增數(shù)列”的充分不必要條件;
(Ⅲ)若,i=1, 2, 3,…,求數(shù)列的通項公式.
【答案】(1)見解析;(2)見解析;(3) .
【解析】試題分析:(Ⅰ)代入的值,即可求得, , , , .
(Ⅱ)根據(jù)題意,先證充分性和不必要性,分別作出證明.
(Ⅲ)分當(dāng)為奇數(shù)和當(dāng)為偶數(shù),兩種情況進(jìn)而推導(dǎo)數(shù)列的通項公式.
試題解析:
(Ⅰ)解: , , , , .
(Ⅱ)證明:(充分性)
因為為奇數(shù), 為偶數(shù),
所以,對于任意, 都為奇數(shù).
所以.
所以數(shù)列是單調(diào)遞增數(shù)列.
(不必要性)
當(dāng)數(shù)列中只有是奇數(shù),其余項都是偶數(shù)時, 為偶數(shù), 均為奇數(shù),
所以,數(shù)列是單調(diào)遞增數(shù)列.
所以“為奇數(shù), 為偶數(shù)”不是“數(shù)列是單調(diào)遞增數(shù)列”的必要條件;
綜上所述,“為奇數(shù), 為偶數(shù)”是“數(shù)列是單調(diào)遞增數(shù)列” 的充分不必要條件.
(Ⅲ)解:(1)當(dāng)為奇數(shù)時,
如果為偶數(shù),
若為奇數(shù),則為奇數(shù),所以為偶數(shù),與矛盾;
若為偶數(shù),則為偶數(shù),所以為奇數(shù),與矛盾.
所以當(dāng)為奇數(shù)時, 不能為偶數(shù).
(2)當(dāng)為偶數(shù)時,
如果為奇數(shù),
若為奇數(shù),則為偶數(shù),所以為偶數(shù),與矛盾;
若為偶數(shù),則為奇數(shù),所以為奇數(shù),與矛盾.
所以當(dāng)為偶數(shù)時, 不能為奇數(shù).
綜上可得與同奇偶.
所以為偶數(shù).
因為為偶數(shù),所以為偶數(shù).
因為為偶數(shù),且,所以.
因為,且,所以.
以此類推,可得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),關(guān)于函數(shù)的性質(zhì),有以下四個推斷:
①的定義域是;
②的值域是;
③是奇函數(shù);
④是區(qū)間(0,2)內(nèi)的增函數(shù).
其中推斷正確的個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)工會利用 “健步行”開展健步走積分獎勵活動.會員每天走5千步可獲積分30分(不足5千步不積分),每多走2千步再積20分(不足2千步不積分).記年齡不超過40歲的會員為類會員,年齡大于40歲的會員為類會員.為了解會員的健步走情況,工會從兩類會員中各隨機(jī)抽取名會員,統(tǒng)計了某天他們健步走的步數(shù),并將樣本數(shù)據(jù)分為, , , , , , , , 九組,將抽取的類會員的樣本數(shù)據(jù)繪制成頻率分布直方圖, 類會員的樣本數(shù)據(jù)繪制成頻率分布表(圖、表如下所示).
(Ⅰ)求和的值;
(Ⅱ)從該地區(qū)類會員中隨機(jī)抽取名,設(shè)這名會員中健步走的步數(shù)在千步以上(含千步)的人數(shù)為,求的分布列和數(shù)學(xué)期望;
(Ⅲ)設(shè)該地區(qū)類會員和類會員的平均積分分別為和,試比較和的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求曲線在處的切線方程;
(Ⅱ)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年空氣質(zhì)量逐步霧霾天氣現(xiàn)象增多,大氣污染危害加重,大氣污染可引起心悸,呼吸困難等心肺疾病,為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對入院50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 5 | ||
女 | 10 | ||
合計 | 50 |
已知按性別采用分層抽樣法抽取容量為10的樣本,則抽到男士的人數(shù)為5.
(Ⅰ)請將上面的列聯(lián)表補充完整;
(Ⅱ)能否在犯錯概率不超過的前提下認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由.
下面的臨界值表供參考:
參考公式:
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于項數(shù)為()的有窮正整數(shù)數(shù)列,記(),即為中的最大值,稱數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”.比如的“創(chuàng)新數(shù)列”為.
(1)若數(shù)列的“創(chuàng)新數(shù)列”為1,2,3,4,4,寫出所有可能的數(shù)列;
(2)設(shè)數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,滿足(),求證: ();
(3)設(shè)數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,數(shù)列中的項互不相等且所有項的和等于所有項的積,求出所有的數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】節(jié)約資源和保護(hù)環(huán)境是中國的基本國策.某化工企業(yè),積極響應(yīng)國家要求,探索改良工藝,使排放的廢氣中含有的污染物數(shù)量逐漸減少.已知改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良后所排放的廢氣中含有的污染物數(shù)量為.設(shè)改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良工藝后所排放的廢氣中含有的污染物數(shù)量為,則第n次改良后所排放的廢氣中的污染物數(shù)量,可由函數(shù)模型給出,其中n是指改良工藝的次數(shù).
(1)試求改良后所排放的廢氣中含有的污染物數(shù)量的函數(shù)模型;
(2)依據(jù)國家環(huán)保要求,企業(yè)所排放的廢氣中含有的污染物數(shù)量不能超過,試問至少進(jìn)行多少次改良工藝后才能使得該企業(yè)所排放的廢氣中含有的污染物數(shù)量達(dá)標(biāo).
(參考數(shù)據(jù):取)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】企業(yè)需為員工繳納社會保險,繳費標(biāo)準(zhǔn)是根據(jù)職工本人上一年度月平均工資(單位:元)的繳納,
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
t | 1 | 2 | 3 | 4 | 5 |
y | 270 | 330 | 390 | 460 | 550 |
某企業(yè)員工甲在2014年至2018年各年中每月所撒納的養(yǎng)老保險數(shù)額y(單位:元)與年份序號t的統(tǒng)計如下表:
(1)求出t關(guān)于t的線性回歸方程;
(2)試預(yù)測2019年該員工的月平均工資為多少元?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
(注:,,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人做試驗,從一個裝有標(biāo)號為1,2,3,4的小球的盒子中,無放回地取兩個小球,每次取一個,先取的小球的標(biāo)號為,后取的小球的標(biāo)號為,這樣構(gòu)成有序?qū)崝?shù)對
(1)寫出這個試驗的所有結(jié)果;
(2)求“第一次取出的小球上的標(biāo)號為”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com