12.在不等邊△ABC中,a2<b2+c2,則A的取值范圍是( 。
A.90°<A<180°B.45°<A<90°C.60°<A<90°D.0°<A<90°

分析 已知不等式變形判斷得到cosA大于0,得到A小于90°,再利用三角形邊角關系及內(nèi)角和定理判斷即可確定出A的范圍.

解答 解:∵a2<b2+c2,
∴b2+c2-a2>0,
∴cosA>0,
∴∠A<90°,
又∵180°>A>0°,
∴0°<A<90°.
故選:D.

點評 此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關鍵,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.正三角形ABC中,D為線段BC上的點,且AB=6,BD=2,則$\overrightarrow{AB}$•$\overrightarrow{AD}$=30.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(x,$\sqrt{3}$),$\overrightarrow$=(3,-$\sqrt{3}$),若$\overrightarrow{a}$⊥$\overrightarrow$,則|${\overrightarrow a}$|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.如圖,勘探隊員朝一座山行進,在前后兩處A,B觀察塔尖P及山頂Q.已知P,Q,A,B,O在同一平面且與水平面垂直.設塔高PQ=h,山高QO=H,AB=m,BO=n,仰角∠PAO=α,仰角∠QAO=β,仰角∠PBO=θ.試用m,α,β,θ表示h,h=$\frac{msinα}{sin(θ-α)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若函數(shù)f(x)=x3+2x2+mx-5是R上的單調(diào)遞增函數(shù),則m的取值范圍是$[\frac{4}{3},+∞)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.全集U=R,若集合A={x|3≤x<10},B={x|1<x-1≤6},則
(1)求A∩B,A∪B;
(2)若集合C={x|x>a},滿足C∪A=C時,求a的取值范圍.(結果用區(qū)間或集合表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)為奇函數(shù),且x>0時f(x)=2x-2,則不等式f(x+1)<0的解集為( 。
A.{x|x<0或1<x<2}B.{x|-2<x<-1或x>0}C.{x|x<-2或-1<x<0}D.{x|0<x<1或x>2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知角α的終邊經(jīng)過點(3a,-4a)(a<0),則sinα-cosα等于( 。
A.-$\frac{1}{5}$B.-$\frac{7}{5}$C.$\frac{1}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,已知底面ABCD是菱形且∠BAD=60°,側棱PA=PD,O為AD邊的中點,M為線段PC上的定點.
(1)求證:平面PAD⊥平面POB;
(2)若AB=2$\sqrt{3}$,PA=$\sqrt{7}$,PB=$\sqrt{13}$,且直線PA∥平面MOB,求三棱錐P-MOB的體積.

查看答案和解析>>

同步練習冊答案