寫出命題“存在x∈R,x2-2x-3>0”的否定是
 
考點:命題的否定
專題:簡易邏輯
分析:根據(jù)特稱命題的否定是全稱命題.,即可得到結(jié)論.
解答: 解:∵命題是特稱命題,
∴命題的否定是“任意x∈R,x2-2x-3≤0”,
故答案為:“任意x∈R,x2-2x-3≤0”
點評:本題主要考查含有量詞的命題的否定,根據(jù)特稱命題的否定是全稱命題,全稱命題的否定是特稱命題是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①函數(shù)y=cos(2x-
π
6
)圖象的一條對稱軸是x=
12

②在同一坐標系中,函數(shù)y=sinx與y=lgx的交點個數(shù)為3個;
③將函數(shù)y=sin(2x+
π
3
)的圖象向右平移
π
3
個單位長度可得到函數(shù)y=sin2x的圖象;
④存在實數(shù)x,使得等式sinx+cosx=
3
2
成立;
其中正確的命題為
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x5+ax3+bx15+cx23+ex-10且f(-2)=36,那么f(2)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有9 名翻譯人員,其中6人只能做英語翻譯,2人只能做韓語翻譯,另外1人既可做英語翻譯也可做韓語翻譯.要從中選5人分別接待5個外國旅游團,其中兩個旅游團需要韓語翻譯,三個需要英語翻譯,則不同的選派方法為
 
種方法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設α=cos420°,函數(shù)f(x)=
ax, x<0
logax , x≥0
,則f(
1
4
)+f(log2
1
6
)的值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x+1)=2x2+1,則f(4)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面向量
a
b
的夾角為60°,
a
=(2,0),|
b
|=1,則
a
b
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α,β∈(-
π
2
,
π
2
),tan(α+β+
π
6
)=
1
2
,tan(β-
π
6
)=-
1
3
,則α=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(x2-
1
ax
9(a∈R)的展開式中x9的系數(shù)為-
21
2
,則
a
-a
(1+sinx)dx的值等于
 

查看答案和解析>>

同步練習冊答案