下列各命題正確的是( 。
A、終邊相同的角一定相等
B、若α是第四象限的角,則π-α在第三象限
C、若|
a
|=|
b
|,則
a
=
b
D、若α∈(0,π),則sinα>cosα
考點:命題的真假判斷與應(yīng)用
專題:簡易邏輯
分析:利用終邊相同的角的定義判斷A的正誤;通過角的變換判斷B的正誤;利用向量關(guān)系判斷C的正誤;利用特例判斷D的正誤;
解答: 解:對于A,終邊相同的角一定相等,顯然不正確,角相差2π的整數(shù)倍,故A錯誤.
對于B,若α是第四象限的角,∴-α是第一象限角,則由任意角的定義知,π-α是第三象限角.故B正確.
對于C,若|
a
|=|
b
|,則
a
=
b
,顯然不正確,向量的方向不能確定,故C錯誤.
對于D,若α∈(0,π),則sinα>cosα,不正確例如α=30°,sinα=
1
2
,cosα=
3
2
,故D錯誤.
故選:B.
點評:本題考查命題的真假的判斷,考查三角函數(shù)的基本知識,向量的模的運算,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的直觀圖和三視圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形

(Ⅰ)證明:BN⊥平面C1B1N;
(Ⅱ)設(shè)二面角C-NB1-C1的平面角為θ,求cosθ的值;
(Ⅲ)M為AB中點,在CB上是否存在一點P,使得MP∥平面CNB1,若存在,求出BP的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(4-x)ex的單調(diào)遞減區(qū)間是( 。
A、(-∞,4)
B、(-∞,3)
C、(4,+∞)
D、(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x|x-a|,其中x∈R,
(1)判斷函數(shù)f(x)的奇偶性;    
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以直線x-y=0與x-3y+2=0的交點A,及B(0,4),C(3,0)組成三角形ABC,D為BC邊上的中點,求:
(1)AD所在直線方程
(2)三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a0+
1
2
a1+
1
3
a2+…+
1
n+1
an=0,其中ai(i=0,1,…n)是不全為零的常數(shù),試證明:多項式f(x)=a0+a1x+…+anxn在(0,1)內(nèi)至少有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=
2
3
,an-an-1=4n-2(n≥2),記Tn=
3an
2n-1
,如果對任意的正整數(shù)n,都有Tn≥M,則實數(shù)M的最大值為(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由命題“Rt△ABC中,兩直角邊分別為a,b,斜邊上的高為h,則得
1
h2
=
1
a2
+
1
b2
”由此可類比出命題“若三棱錐S-ABC的三條側(cè)棱SA,SB,SC兩兩垂直,長分別為a,b,c,底面ABC上的高為h,則得
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<x<
π
2
,求函數(shù)f(x)=
(sin2x+2)2
sin2x
的最小值為
 
,相應(yīng)x的值為
 

查看答案和解析>>

同步練習(xí)冊答案