11.已知角α的終邊經(jīng)過點(sin15°,-cos15°),則cos2α的值為(  )
A.$\frac{1}{2}+\frac{{\sqrt{3}}}{4}$B.$\frac{1}{2}-\frac{{\sqrt{3}}}{4}$C.$\frac{3}{4}$D.0

分析 由三角函數(shù)的定義可先求sinα,然后代入求解.

解答 解:角α的終邊經(jīng)過點P(sin15°,-cos15°),即P(cos(-75°),sin(-75°))
由三角函數(shù)的定義可得,cos2α=cos2(-75°)=[cos(45°+30°)]2=$\frac{1}{2}-\frac{\sqrt{3}}{4}$.
故選:B.

點評 本題主要考查了三角函數(shù)的定義,兩角和與差的三角函數(shù),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知sinα+cosα=$\frac{{3\sqrt{5}}}{5}$,α∈(${\frac{π}{4}$,$\frac{π}{2}}$),求sin2α和tan2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知矩形ABCD中,AB=2,AD=5,E,F(xiàn)分別在AD,BC上,且AE=1,BF=3,沿EF將四邊形AEFB折成四邊形A′EFB′,使點B′在平面CDEF上的射影H在直線DE上,且EH=1.
(1)求證:A′D∥平面B′FC;
(2)求C到平面B′HF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π),直線x=$\frac{π}{6}$是它的一條對稱軸,且(${\frac{2π}{3}$,0)是離該軸最近的一個對稱中心,則φ=(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a,b,c分別是△ABC內(nèi)角A,B,C的對邊,sin2B=sinAsinC.
(1)若a=$\sqrt{2}$b,求cosB;
(2)若B=60°,且a=$\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在三角形ABC中,角A,B,C的對邊分別為a,b,c,且三角形的面積為S=$\frac{{\sqrt{3}}}{2}$accosB.
(1)求角B的大;
(2)已知a2+c2=4ac,求sinAsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2+ax-3a2lnx,(a>0).
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在[1,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,a,b,c分別為角A,B,C的對邊,且cos2B+cosB+cos(C-A)=1,則(  )
A.a,b,c成等比數(shù)列B.a,b,c成等差數(shù)列C.a,c,b成等比數(shù)列D.a,c,b成等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.給出下列命題:
①在△ABC中,若$\overrightarrow{AB}•\overrightarrow{AC}$>0,則∠A為銳角,
②函數(shù)y=x3在R上既是奇函數(shù)又是增函數(shù),
③若$\overrightarrow a=(λ,2),\overrightarrow b=(-3,-5),且\overrightarrow a與\overrightarrow b的夾角為鈍角,則λ的取值范圍是λ>-\frac{10}{3}$
④函數(shù)y=f(x)的圖象與直線x=a至多有一個交點,
⑤若{an}成等比數(shù)列,Sn是前n項和,則S4,S8-S4,S12-S8成等比數(shù)列;
其中正確命題的序號是①②④.(把你認為正確命題的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案