17.已知a>b>0,且a,b,-2這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則a+b=5.

分析 a>b>0,可得:a,b,-2這三個(gè)數(shù)可適當(dāng)排序?yàn)?2,b,a或a,b,-2后成等差數(shù)列,也可適當(dāng)排序?yàn)閎,-2,a或a,-2,b后成等比數(shù)列,即可得出.

解答 解:由a>b>0,可得:a,b,-2這三個(gè)數(shù)可適當(dāng)排序?yàn)?2,b,a或a,b,-2后成等差數(shù)列,也可適當(dāng)排序?yàn)閎,-2,a或a,-2,b后成等比數(shù)列,
∴2b=a-2,(-2)2=ab,
聯(lián)立解得a=4,b=1,
∴a+b=5.
故答案為:5.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知p:實(shí)數(shù)x滿足x2-4ax+3a2<0,其中a<0;q:實(shí)數(shù)x滿足x2+5x+4≤0,且p是q的充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若m個(gè)不全相等的正數(shù)a1,a2,…am依次圍成一個(gè)圓圈使每個(gè)ak(1≤k≤m,k∈N)都是其左右相鄰兩個(gè)數(shù)平方的等比中項(xiàng),則正整數(shù)m的最小值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.三張卡片上分別寫有數(shù)字1、2、3,將它們排成一行,恰好排成順序?yàn)椤?21”的概率為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.求值sin36°cos24°+cos36°sin156°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}滿足a1=2,an+1-2an=2,數(shù)列bn=log2(an+2).若Sn為數(shù)列{bn}的前n項(xiàng)和,則{$\frac{{{S_n}+4}}{n}$}的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.sin75°的值為( 。
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{{\sqrt{2}+\sqrt{6}}}{4}$D.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在三棱柱ABC-A1B1C1中,△ABC是邊長(zhǎng)為2的等邊三角形,AA1⊥平面ABC,點(diǎn)E是AB的中點(diǎn),CE∥平面A1BD.
(1)求證:點(diǎn)D是CC1的中點(diǎn);
(2)若A1D⊥BD時(shí),求平面A1BD與平面ABC所成二面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知{|an|}是首項(xiàng)和公差均為1的等差數(shù)列,則a2=±2,若S2=a1+a2,則S2的所有可能值組成的集合為{-3,-1,1,3}.

查看答案和解析>>

同步練習(xí)冊(cè)答案