已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,在正方體內(nèi)隨機(jī)取點(diǎn)M,求使四棱錐M-ABCD的體積小于
1
6
的概率.
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:算出當(dāng)四棱錐M-ABCD的體積等于
1
6
時(shí),點(diǎn)M到平面ABCD的距離等于
1
2
,可得當(dāng)M到平面ABCD的距離小于
1
2
時(shí),四棱錐M-ABCD的體積小于
1
6

由此利用長(zhǎng)方體、正方體的體積公式和幾何概型公式加以計(jì)算,可得所求概率
解答: 解:∵正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,
∴正方體的體積V=1×1×1=1.
當(dāng)四棱錐M-ABCD的體積小于
1
6
時(shí),設(shè)它的高為h,
1
3
×12h
1
6
,解之得h<
1
2

則點(diǎn)M在到平面ABCD的距離等于
1
2
的截面以下時(shí),四棱錐M-ABCD的體積小于
1
6
,
求得使得四棱錐M-ABCD的體積小于
1
6
的長(zhǎng)方體的體積V'=1×1×
1
2
=
1
2

∴四棱錐M-ABCD的體積小于
1
6
的概率P=
V′
V
=
1
2

故答案為:
1
2
點(diǎn)評(píng):本題給出正方體的棱長(zhǎng),求四棱錐的體積小于
1
6
的概率.著重考查了空間幾何體的體積計(jì)算和幾何概型計(jì)算公式等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,第(1)個(gè)多邊形是由正三角形“擴(kuò)展”而來,第(2)個(gè)多邊形是由正四邊形“擴(kuò)展”而來,…如此類推.設(shè)由正n邊形“擴(kuò)展”而來的多邊形的邊數(shù)為an

則數(shù)列{
1
an
}的前n項(xiàng)之和等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l過點(diǎn)P(1,1)與雙曲線x2-
y2
4
=1只有一個(gè)公共點(diǎn),則這樣的直線有( 。
A、4條B、3條C、2條D、1條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+y2=1(a>1)的上頂點(diǎn)為A,右焦點(diǎn)為F2,直線AF2與圓M:(x-3)2+(y-1)2=3相切.
(1)求橢圓C的方程;
(2)過橢圓C的左焦點(diǎn)F1且斜率為1的直線l交橢圓C于P、Q兩點(diǎn),求△PF2Q的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)各項(xiàng)均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,對(duì)任意n∈N*,有2Sn=2pan2+pan-p(p∈R).
(1)求常數(shù)P的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)記bn=
4Sn
n+3
2n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,D是AB邊上的點(diǎn),且AD=
1
3
AB,連結(jié)CD.現(xiàn)隨機(jī)丟一粒豆子在△ABC內(nèi),則它落在陰影部分的概率是( 。
A、
1
4
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x-(x+1)ln(x+1)(x>-1)
(1)求f(x)的最大值;
(2)證明:當(dāng)n>m>1時(shí),(1+n)m<(1+m)n;
(3)證明:當(dāng)n>2014,且x1,x2,x3,…,xn∈R+,x1+x2+x3+…+xn=1時(shí),(
x12
1+x1
+
x22
1+x2
+
x32
1+x3
+…+
xn2
1+xn
)
1
n
>(
1
2015
)
1
2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知
a
b
,求作
a
-
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=
1
2
,且(n+2)an+1=nan,則它的前20項(xiàng)之和S20=( 。
A、
18
19
B、
19
20
C、
20
21
D、
21
22

查看答案和解析>>

同步練習(xí)冊(cè)答案