已知拋物線的頂點在坐標原點,焦點為,點是點關于軸的對稱點,過點的直線交拋物線于兩點。
(Ⅰ)試問在軸上是否存在不同于點的一點,使得軸所在的直線所成的銳角相等,若存在,求出定點的坐標,若不存在說明理由。
(Ⅱ)若的面積為,求向量的夾角;

(Ⅰ)存在T(1,0);(Ⅱ)向量的夾角

解析試題分析:(Ⅰ)試問在軸上是否存在不同于點的一點,使得軸所在的直線所成的銳角相等,若存在,求出定點的坐標,若不存在說明理由,這是一個探索性命題,解這一類問題,一般都假設其存在,若能求出的坐標,就存在這樣的點,若不能求出的坐標,就不存在這樣的點,本題假設存在滿足題意,軸所在的直線所成的銳角相等,則它們的斜率互為相反數(shù),結合直線與拋物線的位置關系,采用設而不求的方法即可解決;(Ⅱ)求向量的夾角,可根據(jù)夾角公式,分別求出,與即可.
試題解析:(Ⅰ)由題意知:拋物線方程為: 
  直線代入
,
假設存在滿足題意,則
    

 存在T(1,0)
(Ⅱ),

(13分)
考點:直線與拋物線位置關系,向量夾角.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知圓過定點,圓心在拋物線上,、為圓軸的交點.
(1)當圓心是拋物線的頂點時,求拋物線準線被該圓截得的弦長.
(2)當圓心在拋物線上運動時,是否為一定值?請證明你的結論.
(3)當圓心在拋物線上運動時,記,,求的最大值,并求出此時圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓 的離心率為,點,0),(0,)原點到直線的距離為。

(1) 求橢圓的方程;
(2) 設點為(,0),點在橢圓上(與均不重合),點在直線上,若直線的方程為,且,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的中心在坐標原點,短軸長為4,且有一個焦點與拋物線的焦點重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經(jīng)過定點M(2,0)且斜率不為0的直線交橢圓C于A、B兩點,試問在x軸上是否另存在一個定點P使得始終平分?若存在,求出點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知兩點,點在以為焦點的橢圓上,且、、構成等差數(shù)列.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,動直線與橢圓有且僅有一個公共點,點是直線上的兩點,且,
. 求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知圓為圓上一動點,點是線段的垂直平分線與直線的交點.

(1)求點的軌跡曲線的方程;
(2)設點是曲線上任意一點,寫出曲線在點處的切線的方程;(不要求證明)
(3)直線過切點與直線垂直,點關于直線的對稱點為,證明:直線恒過一定點,并求定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知分別是橢圓的左、右焦點,右焦點到上頂點的距離為2,若
(Ⅰ)求此橢圓的方程;
(Ⅱ)直線與橢圓交于兩點,若弦的中點為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在坐標原點,焦點在軸上,橢圓上的點到焦點距離的最大值為,最小值為
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點、,且線段的垂直平分線過定點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,F(xiàn)1,F(xiàn)2分別是橢圓C:=1(a>b>0)的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°

(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求a,b的值

查看答案和解析>>

同步練習冊答案