如圖,已知△OFQ的面積為S,且·=1.設(shè)||=c(c≥2),S=c.若以O(shè)為中心,F(xiàn)為一個焦點的橢圓經(jīng)過點Q,當(dāng)取最小值時,求橢圓的方程.


解:以O(shè)為原點,所在直線為x軸建立平面直角坐標(biāo)系.

設(shè)橢圓方程為=1(a>b>0),Q(x,y). 

=(c,0),則=(x-c,y).

·y=c,∴y=.

又∵=c(x-c)=1,∴x=c+.

可以證明:當(dāng)c≥2時,函數(shù)t=c+為增函數(shù),

∴當(dāng)c=2時,

此時Q.將Q的坐標(biāo)代入橢圓方程,


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


已知曲線C上動點P(x,y)到定點F1(,0)與定直線l1∶x=的距離之比為常數(shù).

(1) 求曲線C的軌跡方程;

(2) 以曲線C的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與曲線C交于點M與點N,求·的最小值,并求此時圓T的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


橢圓=1的焦點為F1、F2,點P為橢圓上的動點,當(dāng)∠F1PF2為鈍角時,求點P的橫坐標(biāo)x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的左焦點為F,右頂點為A,動點M 為右準(zhǔn)線上一點(異于右準(zhǔn)線與x軸的交點),設(shè)線段FM交橢圓C于點P,已知橢圓C的離心率為,點M的橫坐標(biāo)為.

(1) 求橢圓C的標(biāo)準(zhǔn)方程;

(2) 設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1·k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


 如圖,正方形ABCD內(nèi)接于橢圓=1(a>b>0),且它的四條邊與坐標(biāo)軸平行,正方形MNPQ的頂點M、N在橢圓上,頂點P、Q在正方形的邊AB上,且A、M都在第一象限.

(1) 若正方形ABCD的邊長為4,且與y軸交于E、F兩點,正方形MNPQ的邊長為2.

① 求證:直線AM與△ABE的外接圓相切;

② 求橢圓的標(biāo)準(zhǔn)方程;

(2) 設(shè)橢圓的離心率為e,直線AM的斜率為k,求證:2e2-k是定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)F1,F(xiàn)2是雙曲線x2=1的兩個焦點,P是雙曲線上的一點,且3PF1=4PF2,則△PF1F2的面積等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知雙曲線C:=1的焦距為10,P(2,1)在C的漸近線上,則C的方程為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


現(xiàn)有一個關(guān)于平面圖形的命題:如圖所示,同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為.類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.

(1) 求數(shù)列{bn}的通項公式bn;

(2) 設(shè)數(shù)列{an}的通項an=loga (其中a>0且a≠1).記Sn是數(shù)列{an}的前n項和,試比較Snlogabn+1的大小,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案