設(shè)S是至少含有兩個(gè)元素的集合.在S上定義了一個(gè)二元運(yùn)算“*”(即對(duì)任意的a,b∈S,對(duì)于有序元素對(duì)(a,b),在S中有唯一確定的元素a*b與之對(duì)應(yīng)).若對(duì)于任意的a,b∈S,有a*( b*a)=b,則對(duì)任意的a,b∈S,下列等式中不能成立的是( 。
分析:利用新定義,分別確定A,B,D正確,即可得出結(jié)論.
解答:解:用b代替題目給定的運(yùn)算式中的a,同時(shí)用a代替題目給定的運(yùn)算式中的b,知道B是正確的;
用b代替題目給定的運(yùn)算式中的a,又可以導(dǎo)出選項(xiàng)A的結(jié)論,
而用b代替題目給定的運(yùn)算式中的a,可得到D是正確的.
故選C
點(diǎn)評(píng):本題考查了進(jìn)行簡(jiǎn)單的合情推理,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、設(shè)S是至少含有兩個(gè)元素的集合,在S上定義了一個(gè)二元運(yùn)算“*”(即對(duì)任意a,b∈S,對(duì)于有序元素對(duì)(a,b),在S中有唯一確定的元素a*b與之對(duì)應(yīng)).若對(duì)任意的a,b∈S,有a*(b*a)=b,則對(duì)任意a,b∈S,給出下列關(guān)系式:①(a*b)*a=a; ②[a*(b*a)]*(a*b)=a;③b*(b*b)=b; ④(a*b)*[b*(a*b)]=b,其中正確命題的序號(hào)是
②③④
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、設(shè)S是至少含有兩個(gè)元素的集合,在S上定義了一個(gè)二元運(yùn)算“*”(即對(duì)任意的a,b∈S,對(duì)于有序元素對(duì)(a,b),在S中有唯一確定的元素與之對(duì)應(yīng))有a*(b*a)=b,則對(duì)任意的a,b∈S,下列等式中不恒成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)S是至少含有兩個(gè)元素的集合.在S上定義了一個(gè)二元運(yùn)算“*”(即對(duì)任意的a,b∈S,對(duì)于有序元素對(duì)(a,b),在S中有唯一確定的元素a*b與之對(duì)應(yīng)).若對(duì)于任意的a,b∈S,有a*(b*a)=b,則對(duì)任意的a,b∈S,下列等式中不能成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)S是至少含有兩個(gè)元素的集合,在S上定義了一個(gè)二元運(yùn)算“*”(即對(duì)任意的a,b∈S,對(duì)于有序元素對(duì)(a,b),在S中有唯一確定的元素a*b與之對(duì)應(yīng)).已知對(duì)任意的a,b∈S,有a*(b*a)=b;則對(duì)任意的a,b∈S,給出下面四個(gè)等式:
(1)(a*b)*a=a  (2)[a*(b*a)]*(a*b)=a   (3)b*(a*b)=a  (4)(a*b)*[b*(a*b)]=b  
上面等式中恒成立的有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•虹口區(qū)二模)設(shè)S是至少含有兩個(gè)元素的集合.在S上定義了一個(gè)二元運(yùn)算“*”(即對(duì)任意的a,b∈S,對(duì)于有序元素對(duì)(a,b),在S中有唯一確定的元素a*b與之對(duì)應(yīng)).若對(duì)任意的a,b∈S,有a*(b*a)=b,則對(duì)任意的a,b∈S,下列等式:①b*(b*b)=b   ②(a*b)*[b*(a*b)]=b   ③(a*b)*a=a中,恒成立的是
①②
①②
(寫出序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案