【題目】利用回歸分析的方法研究兩個(gè)具有線性相關(guān)關(guān)系的變量時(shí),下列說法正確的是:
①相關(guān)系數(shù)r滿足|r|≤1,而且|r|越接近1,變量間的相關(guān)程度越大,|r|越接近0,變量間的相關(guān)程度越小;
②可以用R2來刻畫回歸效果,對(duì)于已獲取的樣本數(shù)據(jù),R2越小,模型的擬合效果越好;
③如果殘差點(diǎn)比較均勻地落在含有x軸的水平的帶狀區(qū)域內(nèi),那么選用的模型比較合適;這樣的帶狀區(qū)域越窄,回歸方程的預(yù)報(bào)精度越高;
④不能期望回歸方程得到的預(yù)報(bào)值就是預(yù)報(bào)變量的精確值.
【答案】①③④
【解析】相關(guān)系數(shù)r是用來衡量兩個(gè)變量之間線性相關(guān)關(guān)系的方法,當(dāng)r=0時(shí),表示兩變量間無線性相關(guān)關(guān)系,當(dāng)0<|r|<1時(shí),表示兩變量存在一定程度的線性相關(guān).且|r|越接近1,兩變量間線性關(guān)系越大.故①正確;
由R2計(jì)算公式可知,R2越小,說明殘差平方和越大,則模型擬合效果越差.故②錯(cuò)誤;
由殘差圖的定義可③正確;
在利用樣本數(shù)據(jù)得到回歸方程的過程中,不可避免的會(huì)產(chǎn)生各種誤差,因此用回歸方程得到的預(yù)報(bào)值只能是實(shí)際值的近似值.故④正確.
故答案:①③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于直線l:x+1=0,以下說法正確的是( )
A.直線l傾斜角為0
B.直線l傾斜角不存在
C.直線l斜率為0
D.直線l斜率不存在
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“φ=π”是“曲線y=sin(2x+φ)過坐標(biāo)原點(diǎn)”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列語句中所表示的事件中的因素不具有相關(guān)關(guān)系的是( 。
A.瑞雪兆豐年
B.上梁不正下梁歪
C.吸煙有害健康
D.喜鵲叫喜,烏鴉叫喪
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},則(UA)∪B為( )
A.{1,2,4}
B.{2,3,4}
C.{0,2,3,4}
D.{0,2,4}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】采用系統(tǒng)抽樣方法從960人中抽取32人做問卷調(diào)查,為此將他們隨機(jī)編號(hào)為1,2,…,960,分組后在第一組采用簡單隨機(jī)抽樣的方法抽到的號(hào)碼為9.抽到的32人中,編號(hào)落入?yún)^(qū)間[1,450]的人做問卷A,編號(hào)落入?yún)^(qū)間[451,750]的人做問卷B,其余的人做問卷C.則抽到的人中,做問卷B的人數(shù)為( )
A.7
B.9
C.10
D.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={1,2,3,4},B={2,4,6},則A∩B的元素個(gè)數(shù)是( )
A.0個(gè)
B.1個(gè)
C.3個(gè)
D.2個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】安排一張有5個(gè)獨(dú)唱節(jié)目和3個(gè)合唱節(jié)目的節(jié)目單,要求合唱節(jié)目不連排而且不排在第一個(gè)節(jié)目,那么不同的節(jié)目單有( )
A.7200種
B.1440種
C.1200種
D.2880種
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com