【題目】在直角坐標坐標系中,曲線的參數(shù)方程為為參數(shù)),以直角坐標系的原點為極點,以軸的正半軸為極軸建立極坐標系,已知直線的極坐標方程為.

(1)求曲線的普通方程;

(2)若與曲線相切,且與坐標軸交于兩點,求以為直徑的圓的極坐標方程.

【答案】(1);(2)

【解析】試題分析:(1)由曲線的參數(shù)方程為為參數(shù)),消去參數(shù)t,可得曲線的普通方程為.

(2)將化直后與曲線C聯(lián)立得,由與曲線相切,所以,進而可求以為直徑的圓的直角坐標方程為,由極直互化公式可得對應(yīng)的極坐標方程為.

試題解析:(1)由,得

,即,

故曲線的普通方程為.

(2)由,得,

聯(lián)立得,

因為與曲線相切,所以,

所以的方程為,不妨假設(shè),則,線段的中點為,

所以,又,

故以為直徑的圓的直角坐標方程為,

其對應(yīng)的極坐標方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x.

(1)判斷函數(shù)的奇偶性,并證明;

(2)用單調(diào)性的定義證明函數(shù)f(x)=2x在(0,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機抽取了200人進行抽樣分析,得到如表(單位:人):

經(jīng)常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(Ⅰ)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關(guān)?

(Ⅱ)①現(xiàn)從所抽取的30歲以上的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進行分層抽樣抽取10人,然后,再從這10人中隨機選出3人贈送優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用共享單車的概率.

②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機抽取10人贈送禮品,記其中經(jīng)常使用共享單車的人數(shù)為,求的數(shù)學(xué)期望和方差.

參考公式:,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程是,曲線的極坐標方程為.

(1)求曲線的直角坐標方程;

(2)設(shè)曲線交于點,曲線軸交于點,求線段的中點到點的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) ,數(shù)列滿足,,將數(shù)列的前100項從大到小排列得到數(shù)列,若,則k的值為______;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面四個命題中,其中正確命題的序號為____________.

① 函數(shù)是周期為的偶函數(shù);

② 若 是第一象限的角,且,則

是函數(shù)的一條對稱軸方程;

④ 在內(nèi)方程有3個解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面上有兩定點A、B,該平面上一動點P與兩定點A、B的連線的斜率乘積等于常數(shù),則動點P的軌跡可能是下面哪種曲線:①直線;②圓;③拋物線;④雙曲線;⑤橢圓_____(將所有可能的情況用序號都寫出來)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形中,,平面平面,.

(1)求證:平面平面;

(2)若,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若存在,使得,則a的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案