已知角α的終邊經(jīng)過(guò)點(diǎn)P(-3,4),求角α的正弦、余弦、正切函數(shù)值.
考點(diǎn):任意角的三角函數(shù)的定義
專題:計(jì)算題,三角函數(shù)的求值
分析:由題意可得OP=
x2+y2
=5,利用任意角的三角函數(shù)的定義,求出結(jié)果.
解答: 解:由題意可得  x=-3,y=4,
∴r=OP=
x2+y2
=5,
∴sinα=
y
r
=
4
5
,
cosα=
x
r
=-
3
5
,tanα=
y
x
=-
4
3

角α的正弦、余弦、正切函數(shù)值:
4
5
;-
3
5
;-
4
3
點(diǎn)評(píng):本題考查任意角的三角函數(shù)的定義,兩點(diǎn)間的距離公式的應(yīng)用,熟記三角函數(shù)的定義是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓心C在直線l:x+2y=0,圓C過(guò)點(diǎn)A(2,-3),且截直線m:x-y-1=0所得弦長(zhǎng)為2
2
,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=
5
5
,且α是第一象限角.
(1)求cosα的值;
(2)求tan(α+π)+
sin(
2
-α)
cos(π-α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=12x,點(diǎn)M(a,0),過(guò)M的直線l交拋物線C于A,B兩點(diǎn).
(Ⅰ)若a=1,拋物線C的焦點(diǎn)與AB中點(diǎn)的連線垂直于x軸,求直線l的方程;
(Ⅱ)設(shè)a為小于零的常數(shù),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A′,求證:直線A′B過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,長(zhǎng)方體ABCD-A1B1C1D1中,E為線段BC的中點(diǎn),AB=1,AD=2,AA1=
2

(Ⅰ)證明:DE⊥平面A1AE;
(Ⅱ)求點(diǎn)A到平面A1ED的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:實(shí)數(shù)x∈{x|a-4<x<a+4},命題q:實(shí)數(shù)x∈{x|x2-4x+3<0},且p是q的必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.
(Ⅰ)“拋物線三角形”一定是
 
三角形(提示:在答題卡上作答);
(Ⅱ)若拋物線m:y=a(x-2)2+b(a>0,b<0)的“拋物線三角形”是直角三角形,求a,b滿足的關(guān)系式;
(Ⅲ)如圖,△OAB是拋物線n:y=-x2+tx(t>0)的“拋物線三角形”,是
否存在以原點(diǎn)O為對(duì)稱中心的矩形ABCD?若存在,求出過(guò)O、C、D三點(diǎn)的拋物線的表達(dá)式;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有4個(gè)紅球和6個(gè)白球,每個(gè)球都可以區(qū)分,從中取出4個(gè),
(1)取出紅球比白球多的取法有多少種?
(2)假設(shè)取到一個(gè)紅球得2分,取到一個(gè)白球得1分,那么4個(gè)球的總分不少于5分的取法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知線段AB、BD在平面α內(nèi),BD⊥AB,線段AC⊥α,如果AB=2,BD=5,AC=4,則C、D間的距離為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案