定義在R上的函數(shù),對(duì)任意的,有
,且.
(1) 求證:; (2)求證:是偶函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)已知函數(shù)是定義域?yàn)镽的偶函數(shù),其圖像均在x軸的上方,對(duì)任意的,都有,且,又當(dāng)時(shí),為增函數(shù)。
(1)求的值;
(2)對(duì)于任意正整數(shù),不等式:恒成立,求實(shí)數(shù)的取值
范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)已知,且.
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間及最大值,并指出取得最大值時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本大題14分)
已知函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d4/2/dhr8q1.png" style="vertical-align:middle;" />,且滿足.
(Ⅰ)求解析式及最小值;
(Ⅱ)求證:,。
(Ⅲ)設(shè)。求證:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
對(duì)于函數(shù),若存在,使,則稱是的一
個(gè)"不動(dòng)點(diǎn)".已知二次函數(shù)
(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)對(duì)任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求的取值范圍;
(3)在(2)的條件下,若的圖象上兩點(diǎn)的橫坐標(biāo)是的不動(dòng)點(diǎn),
且兩點(diǎn)關(guān)于直線對(duì)稱,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(I)如果對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍;
(II)設(shè)函數(shù)的兩個(gè)極值點(diǎn)分別為判斷下列三個(gè)代數(shù)式:
①②③中有幾個(gè)為定值?并且是定值請(qǐng)求出;
若不是定值,請(qǐng)把不是定值的表示為函數(shù)并求出的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),為實(shí)數(shù).
(1)當(dāng)時(shí),判斷函數(shù)的奇偶性,并說(shuō)明理由;
(2)當(dāng)時(shí),指出函數(shù)的單調(diào)區(qū)間(不要過(guò)程);
(3)是否存在實(shí)數(shù),使得在閉區(qū)間上的最大值為2.若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com