【題目】某個(gè)產(chǎn)品有若千零部件構(gòu)成,加工時(shí)需要經(jīng)過6道工序,分別記為.其中,有些工序因?yàn)槭侵圃觳煌牧悴考,所以可以在幾臺(tái)機(jī)器上同時(shí)加工;有些工序因?yàn)槭菍?duì)同一個(gè)零部件進(jìn)行處理,所以存在加工順序關(guān)系.若加工工序必須要在工序完成后才能開工,則稱的緊前工序.現(xiàn)將各工序的加工次序及所需時(shí)間(單位:小時(shí))列表如下:

工序

加工時(shí)間

3

4

2

2

2

1

緊前工序

現(xiàn)有兩臺(tái)性能相同的生產(chǎn)機(jī)器同時(shí)加工該產(chǎn)品,則完成該產(chǎn)品的最短加工時(shí)間是__________小時(shí).(假定每道工序只能安排在一臺(tái)機(jī)器上,且不能間斷).

【答案】8.

【解析】

分析:由題意,根據(jù)題意兩臺(tái)性能相同的生產(chǎn)機(jī)器同時(shí)加工該產(chǎn)品,確定好加工順序,即可得到答案.

詳解:由題意,可確定如圖所示的加工順序,如圖所示,可得用兩臺(tái)性能相同的生產(chǎn)機(jī)器同時(shí)加工該產(chǎn)品,要完成該產(chǎn)品的最短加工時(shí)間為8小時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù)的導(dǎo)函數(shù)的圖象,給出下列命題:

①-2是函數(shù)的極值點(diǎn);

是函數(shù)的極值點(diǎn);

處取得極大值;

④函數(shù)在區(qū)間上單調(diào)遞增.則正確命題的序號(hào)是

A. ①③ B. ②④ C. ②③ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機(jī)變量.記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0
(1)求p0的值;
(參考數(shù)據(jù):若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)
(2)某客運(yùn)公司用A,B兩種型號(hào)的車輛承擔(dān)甲、乙兩地間的長途客運(yùn)業(yè)務(wù),每車每天往返一次,A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運(yùn)成本分別為1600元/輛和2400元/輛.公司擬組建一個(gè)不超過21輛車的客運(yùn)車隊(duì),并要求B型車不多于A型車7輛.若每天要以不小于p0的概率運(yùn)完從甲地去乙地的旅客,且使公司從甲地去乙地的營運(yùn)成本最小,那么應(yīng)配備A型車、B型車各多少輛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角中,,,分別為內(nèi)角,所對(duì)的邊,且滿足

(Ⅰ)求角的大;

(Ⅱ)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中.

(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;

(Ⅱ)當(dāng)時(shí),證明:函數(shù)不可能存在兩個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(Ⅲ)設(shè)函數(shù),其中.證明:的圖象在圖象的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)S,T是R的兩個(gè)非空子集,如果存在一個(gè)從S到T的函數(shù)y=f(x)滿足:(i)T={f(x)|x∈S};(ii)對(duì)任意x1 , x2∈S,當(dāng)x1<x2時(shí),恒有f(x1)<f(x2),那么稱這兩個(gè)集合“保序同構(gòu)”,以下集合對(duì)不是“保序同構(gòu)”的是(
A.A=N* , B=N
B.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}
C.A={x|0<x<1},B=R
D.A=Z,B=Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,丄平面,,,,.

(1)證明;

(2)求二面角的正弦值;

(3)設(shè)為棱上的點(diǎn),滿足異面直線所成的角為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機(jī)對(duì)50名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車速情況.在30名男性駕駛員中,平均車速超過100額有20人,不超過100 的有10人;在20名女性駕駛員中,平均車速超過100的有5人,不超過100的有15人.

(1)完成下面的列聯(lián)表:

平均車速超過100

平均車速不超過100

合計(jì)

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計(jì)

(2)判斷是否有99.5%的把握認(rèn)為,平均車速超過100與性別有關(guān).

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案