(本小題滿分12分)如圖,三棱柱的各棱長(zhǎng)均為2,側(cè)面底面,側(cè)棱與底面所成的角為.
(1) 求直線與底面所成的角;
(2) 在線段上是否存在點(diǎn),使得平面平面?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由。
(1);(2)。
【解析】
試題分析:(1)根據(jù)題意建立空間直角坐標(biāo)系,然后表示平面的法向量和直線的斜向量,進(jìn)而利用向量的夾角公式得到線面角的求解。
(2)假設(shè)存在點(diǎn)滿足題意,然后利用向量的垂直關(guān)系,得到點(diǎn)的坐標(biāo)。
解:(1)作于,
∵側(cè)面平面,
則,,,,,
∴,又底面的法向量 …4分
設(shè)直線與底面所成的角為,則,∴
所以,直線與底面所成的角為. …6分
(2)設(shè)在線段上存在點(diǎn),設(shè)=,,則
…7分
設(shè)平面的法向量
令 …9分
設(shè)平面的法向量
令 …10分
要使平面平面,則
…12分
考點(diǎn):本題主要是考查線面角的求解,以及面面垂直的探索性命題的運(yùn)用。
點(diǎn)評(píng):解決該試題的關(guān)鍵是合理的建立空間直角坐標(biāo)系,正確的表示點(diǎn)的坐標(biāo),得到平面的法向量和斜向量,進(jìn)而結(jié)合數(shù)量積的知識(shí)來(lái)證明垂直和求解角的問(wèn)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤(rùn)與投資單位是萬(wàn)元)
(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com