【題目】已知實(shí)數(shù),設(shè)函數(shù).

1)當(dāng),時(shí),證明:;

2)若有兩個(gè)極值點(diǎn),證明:.

【答案】1)證明見解析 2)證明見解析

【解析】

1)轉(zhuǎn)化原不等式為,令,,對(duì)稱軸,求導(dǎo)分析單調(diào)性,可得上單調(diào)遞增,在上遞減,上遞增,只需證明,構(gòu)造,分析單調(diào)性,即可得證;

2)求導(dǎo),由為極值點(diǎn),可得,,化簡(jiǎn)可得,繼而構(gòu)造函數(shù)可證明,

可得,令,求導(dǎo)研究單調(diào)性,可證明,即得證

1,即為

,則

令對(duì)稱軸

時(shí), 時(shí), 時(shí),

上單調(diào)遞增,在上遞減,且

上遞增

故只需證明,即證

上單調(diào)遞減,而

當(dāng)時(shí),,當(dāng)時(shí),成立

當(dāng)時(shí),成立;

2

有兩個(gè)極值點(diǎn)

當(dāng)時(shí),;當(dāng)時(shí),

上遞減,上遞增

可得

,下證

即證

等價(jià)于證明

上遞減

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在區(qū)間上的函數(shù),.

(Ⅰ)證明:當(dāng)時(shí),;

(Ⅱ)若曲線過點(diǎn)的切線有兩條,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面上一動(dòng)點(diǎn)A的坐標(biāo)為.

1)求點(diǎn)A的軌跡E的方程;

2)點(diǎn)B在軌跡E上,且縱坐標(biāo)為.

i)證明直線AB過定點(diǎn),并求出定點(diǎn)坐標(biāo);

ii)分別以AB為圓心作與直線相切的圓,兩圓公共弦的中點(diǎn)為H,在平面內(nèi)是否存在定點(diǎn)P,使得為定值?若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

)當(dāng)時(shí),判斷在定義域上的單調(diào)性;

)若上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,且取相等的單位長(zhǎng)度,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù)),設(shè)點(diǎn)

()將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線的參數(shù)方程化為普通方程;

()設(shè)直線與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活水平的不斷提高,肥胖人數(shù)不斷增多.世界衛(wèi)生組織(WHO)常用身體質(zhì)量指數(shù)(BMI)來衡量人體胖瘦成度以及是否健康,其計(jì)算公式是.成人的BMI數(shù)值標(biāo)準(zhǔn)為:BMI偏瘦;BMI為正常;BMI為偏胖;BMI為肥胖.某研究機(jī)構(gòu)為了解某快遞公司員工的身體質(zhì)量指數(shù),研究人員從公司員工體檢數(shù)據(jù)中,抽取了8名員工(編號(hào)1-8)的身高cm)和體重kg)數(shù)據(jù),并計(jì)算得到他們的BMI(精確到0.1)如下表:

號(hào)

1

2

3

4

5

6

7

8

身高(cm

163

164

165

168

170

172

176

182

體重(kg

54

60

77

72

68

72

55

BMI(近似值)

20.3

22.3

28.3

25.5

23.5

23.7

23.2

16.6

1)現(xiàn)從這8名員工中選取3人進(jìn)行復(fù)檢,記抽取到BMI值為正常員工的人數(shù)為,求的分布列及數(shù)學(xué)期望.

2)研究機(jī)構(gòu)分析發(fā)現(xiàn)公司員工的身高cm)和體重kg)之間有較強(qiáng)的線性相關(guān)關(guān)系,在編號(hào)為6的體檢數(shù)據(jù)丟失之前調(diào)查員甲已進(jìn)行相關(guān)的數(shù)據(jù)分析,并計(jì)算得出該組數(shù)據(jù)的線性回歸方程為,且根據(jù)回歸方程預(yù)估一名身高為180cm的員工體重為71kg,計(jì)算得到的其它數(shù)據(jù)如下:,.

①求的值及表格中8名員工體重的平均值.

②在數(shù)據(jù)處理時(shí),調(diào)查員乙發(fā)現(xiàn)編號(hào)為8的員工體重?cái)?shù)據(jù)有誤,應(yīng)為63kg,身高數(shù)據(jù)無誤,請(qǐng)你根據(jù)調(diào)查員乙更正的數(shù)據(jù)重新計(jì)算線性回歸方程,并據(jù)此預(yù)估一名身高為180cm的員工的體重.

附:對(duì)于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘法估計(jì)分別為: ,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且橢圓上一點(diǎn)的坐標(biāo)為.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于,兩點(diǎn),且以線段為直徑的圓過橢圓的右頂點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中假命題是(

A.若隨機(jī)變量服從正態(tài)分布,,則;

B.已知直線平面,直線平面,則的必要不充分條件;

C.,則方向上的正射影的數(shù)量為

D.命題的否定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)又本與橢圓交于兩個(gè)不同點(diǎn),且的面積,其中為坐標(biāo)原點(diǎn).

1)證明均為定值;

2)設(shè)線段的中點(diǎn)為,求的最大值;

查看答案和解析>>

同步練習(xí)冊(cè)答案