f(x)=x2+2xf′(1),若f(x)在R上可導(dǎo),則f′(0)=
 
分析:根據(jù)導(dǎo)數(shù)的公式求函數(shù)導(dǎo)數(shù),令x=1,先求出f'(1),然后令x=0即可得到結(jié)論.
解答:解:∵f(x)=x2+2xf′(1),
∴f'(x)=2x+2f'(1),
當(dāng)x=1,則f'(1)=2+2f'(1),
即f'(1)=-2,
∴f(x)=x2+2xf′(1)=f(x)=x2-4,
∴f'(0)=0-4=-4,
故答案為:-4.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的計(jì)算,要求熟練掌握函數(shù)的導(dǎo)數(shù)公式,先求出f'(1)的值是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-x2+2x  ,x>0
0               ,x=0
x2+mx    ,x<0
為奇函數(shù),若函數(shù)f(x)在區(qū)間[-1,|a|-2]上單調(diào)遞增,則a的取值范圍是
[-3,-1)∪(1,3]
[-3,-1)∪(1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=-x2+2x,x∈[-1,3]的值域?yàn)?!--BA-->
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各組函數(shù)中的f(x)與g(x)是同一函數(shù)的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

探究函數(shù)f(x)=x2+
2
x
(x>0)
的最小值,并確定取得最小值時(shí)x的值.列表如下,請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問(wèn)題.
x 0.25 0.5 0.75 1 1.1 1.2 1.5 2 3 5
y 8.063 4.25 3.229 3 3.028 3.081 3.583 5 9.667 25.4
已知:函數(shù)f(x)=x2+
2
x
(x>0)
在區(qū)間(0,1)上遞減,問(wèn):
(1)函數(shù)f(x)=x2+
2
x
(x>0)
在區(qū)間
[1,+∞)
[1,+∞)
上遞增.當(dāng)x=
1
1
時(shí),y最小=
3
3
;
(2)函數(shù)g(x)=9x2+
2
3|x|
在定義域內(nèi)有最大值或最小值嗎?如有,是多少?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2x+3在閉區(qū)間[0,m]上的值域是[2,3],則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案