【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(0, )上無零點(diǎn),求a最小值.
【答案】
(1)解:當(dāng)a=1時(shí),f(x)=x﹣1﹣2lnx,
則f′(x)=1﹣ ,由f′(x)>0,得x>2,
由f′(x)<0,得0<x<2,
故f(x)的單調(diào)減區(qū)間為(0,2],單調(diào)增區(qū)間為[2,+∞).
(2)因?yàn)閒(x)<0在區(qū)間(0, )上恒成立不可能,
故要使函數(shù)f(x)在(0, )上無零點(diǎn),只要對(duì)任意的x∈(0, ),f(x)>0恒成立,
即對(duì)x∈(0, ),a>2﹣ 恒成立.
令l(x)=2﹣ ,x∈(0, ),
則l′(x)= ,
再令m(x)=2lnx+ ﹣2,x∈(0, ),
則m′(x)=﹣ + = <0,
故m(x)在(0, )上為減函數(shù),于是m(x)>m( )=2﹣2ln2>0,
從而l(x)>0,于是l(x)在(0, )上為增函數(shù),
所以l(x)<l( )=2﹣4ln2,
故要使a>2﹣ 恒成立,只要a∈[2﹣4ln2,+∞),
綜上,若函數(shù)f(x)在(0, )上無零點(diǎn),則a的最小值為2﹣4ln2.
【解析】(1)當(dāng)a=1時(shí),對(duì)函數(shù)進(jìn)行求導(dǎo),得出單調(diào)區(qū)間;(2)通過分析不難得出要使得f(x)在給定區(qū)間無零點(diǎn),只需要f(x)在給定區(qū)間恒大于零,進(jìn)行參變分離,構(gòu)造函數(shù),求導(dǎo),得出a的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,其前n項(xiàng)和為Sn , 且a1a5=64,S5﹣S3=48.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)有正整數(shù)m,l(5<m<l),使得am , 5a5 , al成等差數(shù)列,求m,l的值;
(3)設(shè)k,m,l∈N*,k<m<1,對(duì)于給定的k,求三個(gè)數(shù) 5ak , am , al經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C 的參數(shù)方程為 (α為參數(shù)),以直角坐標(biāo)系原點(diǎn)O 為極點(diǎn),x 軸正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C 的極坐標(biāo)方程;
(Ⅱ)設(shè)l1:θ= ,l2:θ= ,若l 1、l2與曲線C 相交于異于原點(diǎn)的兩點(diǎn) A、B,求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測(cè)標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量y(g)與尺寸x(mm)之間近似滿足關(guān)系式y(tǒng)=axb(a,b為大于0的常數(shù)).現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測(cè)得數(shù)據(jù)如下:
尺寸(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
質(zhì)量(g) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
對(duì)數(shù)據(jù)作了初步處理,相關(guān)統(tǒng)計(jì)量的值如表:
75.3 | 24.6 | 18.3 | 101.4 |
(Ⅰ)根據(jù)所給數(shù)據(jù),求y關(guān)于x的回歸方程;
(Ⅱ)按照某項(xiàng)指標(biāo)測(cè)定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間( , )內(nèi)時(shí)為優(yōu)等品.現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記ξ為取到優(yōu)等品的件數(shù),試求隨機(jī)變量ξ的分布列和期望.
附:對(duì)于一組數(shù)據(jù)(v1 , u1),(v2 , u2),…,(vn , un),其回歸直線u=α+βv的斜率和截距的最小二乘估計(jì)分別為 = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測(cè)雨”題:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是( )
(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺(tái)體的體積公式V= )
A.2寸
B.3寸
C.4寸
D.5寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司對(duì)應(yīng)聘人員進(jìn)行能力測(cè)試,測(cè)試成績(jī)總分為150分.下面是30位應(yīng)聘人員的測(cè)試成績(jī)的測(cè)試成績(jī):64,116,82,93,102,82,104,67,93,118,70,95,119,106,83,72,95,106,72,119,122,95,86,74,131,76,88,108,97,123.
(1)求應(yīng)聘人員的測(cè)試成績(jī)的樣本平均數(shù) (保留小數(shù)點(diǎn)后兩位);
(2)根據(jù)以上數(shù)據(jù)完成下面莖葉圖:
應(yīng)聘人員的測(cè)試成績(jī) | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 |
(3)由莖葉圖可以認(rèn)為,應(yīng)聘人員的測(cè)試成績(jī)Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù) ,σ2近似為樣本方差s2 , 其中s2=18.872 , 利用該正態(tài)分布,求P(76.40<Z<114.14).
附:若Z~N(μ,σ2),則P(μ﹣σ<Z<μ+σ)=0.6826,
P(μ﹣2σ<Z<μ+2σ)=0.9544.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)人力資源部計(jì)劃2016年招聘2名數(shù)學(xué)教師,共5名應(yīng)聘者進(jìn)入最后課堂實(shí)錄環(huán)節(jié).5名數(shù)學(xué)組評(píng)審專家給出評(píng)分如表:
評(píng)審專家/應(yīng)聘老師 | 1 | 2 | 3 | 4 | 5 |
評(píng)審專家A | 93.0 | 90.0 | 88.5 | 89.5 | 82.5 |
評(píng)審專家B | 94.0 | 83.0 | 89.0 | 93.0 | 81.0 |
評(píng)審專家C | 91.0 | 85.0 | 81.5 | 88.0 | 81.0 |
評(píng)審專家D | 92.0 | 91.5 | 81.0 | 94.5 | 87.0 |
評(píng)審專家E | 95.5 | 91.0 | 90.0 | 95.5 | 88.5 |
(Ⅰ)若依據(jù)去掉一個(gè)最高分和一個(gè)最低分規(guī)則計(jì)算應(yīng)聘老師成績(jī),試確定最終應(yīng)聘成功的2名數(shù)學(xué)老師的序號(hào);
(Ⅱ)在課堂實(shí)錄環(huán)節(jié),每名應(yīng)聘老師都需要從5名評(píng)審專家中隨機(jī)選取2名進(jìn)行點(diǎn)評(píng),且每名應(yīng)聘老師的選擇互不影響,設(shè)X表示評(píng)審專家A進(jìn)行點(diǎn)評(píng)的次數(shù),求X的分布列以及數(shù)學(xué)期望;
(Ⅲ)記評(píng)審專家A與評(píng)審專家B給出的評(píng)分的方差分別為 ,試比較 與 的大。ㄖ恍鑼懗鼋Y(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}滿足3a8=5a15 , 且 ,Sn為其前n項(xiàng)和,則數(shù)列{Sn}的最大項(xiàng)為( 。
A.
B.S24
C.S25
D.S26
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:數(shù)列{an}的前n項(xiàng)和Sn=an2+bn+c(a≠0);命題q:數(shù)列{an}是等差數(shù)列.則p是q的( 。
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com