【題目】在北上廣深等十余大中城市,一款叫“一度用車(chē)”的共享汽車(chē)給市民們提供了一種新型的出行方式.2020年,懷化也將出現(xiàn)共享汽車(chē),用戶每次租車(chē)時(shí)按行駛里程(1元/公里)加用車(chē)時(shí)間(0.1元/分鐘)收費(fèi),李先生家離上班地點(diǎn)10公里,每天租用共享汽車(chē)上下班,由于堵車(chē)因素,每次路上開(kāi)車(chē)花費(fèi)的時(shí)間是一個(gè)隨機(jī)變量,根據(jù)一段時(shí)間統(tǒng)計(jì)40次路上開(kāi)車(chē)花費(fèi)時(shí)間在各時(shí)間段內(nèi)的情況如下:
時(shí)間(分鐘) | |||||
次數(shù) | 8 | 14 | 8 | 8 | 2 |
以各時(shí)間段發(fā)生的頻率視為概率,假設(shè)每次路上開(kāi)車(chē)花費(fèi)的時(shí)間視為用車(chē)時(shí)間,范圍為分鐘.
(Ⅰ)若李先生上、下班時(shí)租用一次共享汽車(chē)路上開(kāi)車(chē)不超過(guò)45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設(shè)是4次使用共享汽車(chē)中最優(yōu)選擇的次數(shù),求的分布列和期望;
(Ⅱ)若李先生每天上下班使用共享汽車(chē)2次,一個(gè)月(以20天計(jì)算)平均用車(chē)費(fèi)用大約是多少(同一時(shí)段,用該區(qū)間的中點(diǎn)值作代表).
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)542元.
【解析】試題分析:(1)首先求為最優(yōu)選擇的概率是,故ξ的值可能為0,1,2,3,4,且ξ~B(4,),進(jìn)而求得分布列和期望值;(2)根據(jù)題意得到每次花的平均時(shí)間為35.5,根據(jù)花的費(fèi)用為10+35.5*0.1得到費(fèi)用.
解析:
(Ⅰ)李先生一次租用共享汽車(chē),為最優(yōu)選擇的概率
依題意ξ的值可能為0,1,2,3,4,且ξ~B(4,),
, ,
, ,
, ∴ξ的分布列為:
ξ | 0 | 1 | 2 | 3 | 4 |
P |
(或).
(Ⅱ)每次用車(chē)路上平均花的時(shí)間
(分鐘)
每次租車(chē)的費(fèi)用約為10+35.5×0.1=13.55元.
一個(gè)月的平均用車(chē)費(fèi)用約為542元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某組織在某市征集志愿者參加志愿活動(dòng),現(xiàn)隨機(jī)抽出60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計(jì)出100名市民中愿意參加志愿活動(dòng)和不愿意參加志愿活動(dòng)的男女生比例情況,具體數(shù)據(jù)如圖所示.
(1)根據(jù)條件完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為愿意參與志愿活動(dòng)與性別有關(guān)?
愿意 | 不愿意 | 總計(jì) | |
男生 | |||
女生 | |||
總計(jì) |
(2)現(xiàn)用分層抽樣的方法從愿意參加志愿活動(dòng)的市民中選取7名志愿者,再?gòu)闹谐槿?人作為隊(duì)長(zhǎng),求抽取的2人至少有一名女生的概率.
參考數(shù)據(jù)及公式:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)在區(qū)間上的單調(diào)性;
(2)已知函數(shù),若,且函數(shù)在區(qū)間內(nèi)有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷(xiāo)售量(單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近13年的宣傳費(fèi)和年銷(xiāo)售量 數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
由散點(diǎn)圖知,按建立關(guān)于的回歸方程是合理的.令,則,經(jīng)計(jì)算得如下數(shù)據(jù):
| |||||
10.15 | 109.94 | 0.16 | -2.10 | 0.21 | 21.22 |
(1)根據(jù)以上信息,建立關(guān)于的回歸方程;
(2)已知這種產(chǎn)品的年利潤(rùn)與的關(guān)系為.根據(jù)(1)的結(jié)果,求當(dāng)年宣傳費(fèi)時(shí),年利潤(rùn)的預(yù)報(bào)值是多少?
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,且,若以為左右焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn).
(1)求的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)右焦點(diǎn)且斜率為的動(dòng)直線與相交于兩點(diǎn),探究在軸上是否存在定點(diǎn),使得為定值?若存在,試求出定值和點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,.
(Ⅰ)若的圖像在處的切線過(guò)點(diǎn),求的值并討論在上的單調(diào)增區(qū)間;
(Ⅱ)定義:若直線與曲線、都相切,則我們稱直線為曲線、的公切線.若曲線與存在公切線,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)若在處取到極小值,求的值及函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時(shí), 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求證:函數(shù)是偶函數(shù);
(2)當(dāng)求函數(shù)在上的最大值和最小值;
(3)若對(duì)于任意的實(shí)數(shù)恒有求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (,為自然對(duì)數(shù)的底數(shù)).
(1)若曲線在點(diǎn)處的切線垂直于軸,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),求函數(shù)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com