1.已知定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-6ax-1,x≤1}\\{{a}^{x}-7,x>1}\end{array}\right.$,對(duì)任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{1}{3}$,1)B.[$\frac{1}{3}$,1)C.(0,$\frac{1}{3}$)D.(0,$\frac{1}{3}$]

分析 根據(jù)對(duì)任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,可知f(x)在R上是單調(diào)減函數(shù),可知a<1,由二次函數(shù)的性質(zhì)可知:(-∞,3a)是減區(qū)間,可得3a≥1,且滿足(ax-7)max≤(x2-6ax-1)min可得a的取值范圍.

解答 解:定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-6ax-1,x≤1}\\{{a}^{x}-7,x>1}\end{array}\right.$,
對(duì)任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,可知f(x)在R上是單調(diào)減函數(shù),
可得:y=ax-7是減函數(shù),則a<1.
由二次函數(shù)的性質(zhì)可知:y=x2-6ax-1的對(duì)稱軸為x=3a,其(-∞,3a)是單調(diào)減區(qū)間,
∴3a≥1,可得:a$≥\frac{1}{3}$
滿足(ax-7)max≤(x2-6ax-1)min可得:a-7≤-6a
解得:a<1.
綜上可得:a的取值范圍是[$\frac{1}{3}$,1).
故選:B.

點(diǎn)評(píng) 本題考查了分段函數(shù)的單調(diào)性的運(yùn)用.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+1≥0}\\{x-y+1≥0}\\{x+y-2≤0}\end{array}\right.$,則y-4x的取值范圍是( 。
A.(-∞,4]B.(-∞,7]C.[-$\frac{1}{2}$,4]D.[-$\frac{1}{2}$,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.隨著我國(guó)經(jīng)濟(jì)的飛速發(fā)展,人們的生活水平也同步上升,許許多多的家庭對(duì)于資金的管理都有不同的方式,最新調(diào)查表明,人們對(duì)于投資理財(cái)興趣逐步提高.某投資理財(cái)公司根據(jù)做了大量的數(shù)據(jù)調(diào)查,現(xiàn)有兩種產(chǎn)品投資收益如下:
①投資A產(chǎn)品的收益與投資額的算術(shù)平方根成正比;
②投資B產(chǎn)品的收益與投資額成正比.
公司提供了投資1萬元時(shí)兩種產(chǎn)品的收益分別是0.4萬元和0.2萬元.
(Ⅰ)請(qǐng)寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(Ⅱ)假如現(xiàn)在你有10萬元的資金全部用于投資理財(cái),你該如何分配資金才能讓你的收益最大?最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={a,1},B={a2,0},那么“a=-1”是“A∩B≠∅”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在Rt△ABC中,∠A=90°,點(diǎn)D是邊BC上的動(dòng)點(diǎn),且|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=4,$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ>0,μ>0),則當(dāng)λμ取得最大值時(shí),|$\overrightarrow{AD}$|的值為( 。
A.$\frac{7}{2}$B.3C.$\frac{5}{2}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知圓錐的底面積為3π,高為3,則該圓錐的外接球的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=ln(x+a)-sinx.給出下列命題:
①當(dāng)a=0時(shí),?x∈(0,e),都有f(x)<0;
②當(dāng)a≥e時(shí),?x∈(0,+∞),都有f(x)>0;
③當(dāng)a=1時(shí),?x0∈(2,+∞),使得f(x0)=0.
其中真命題的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某調(diào)查者從調(diào)查中獲知某公司近年來科研費(fèi)支出(xi) 用與公司所獲得利潤(rùn)(yi)的統(tǒng)計(jì)資料如表:
科研費(fèi)用支出(xi)與利潤(rùn)(yi)統(tǒng)計(jì)表   單位:萬元
年份科研費(fèi)用支出(xi利潤(rùn)(yi
2011
2012
2013
2014
2015
2016
5
11
4
5
3
2
31
40
30
34
25
20
合計(jì)30180
(1)由散點(diǎn)圖可知,科研費(fèi)用支出與利潤(rùn)線性相關(guān),試根據(jù)以上數(shù)據(jù)求出y關(guān)于x的回歸直線方程;
(2)當(dāng)x=xi時(shí),由回歸直線方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$得到的函數(shù)值記為$\stackrel{∧}{{y}_{i}}$,我們將ε=|$\stackrel{∧}{{y}_{i}}$-yi|稱為誤差;
在表中6組數(shù)據(jù)中任取兩組數(shù)據(jù),求兩組數(shù)據(jù)中至少有一組數(shù)據(jù)誤差小于3的概率;
參考公式:用最小二乘法求線性回歸方程的系數(shù)公式:
$\stackrel{∧}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{(\overline x)}^2}}}}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-}\overline y)}}{{\sum_{i=1}^n{{{(x_i^{\;}-\overline x)}^2}}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,若在C上存在一點(diǎn)P,使得|PO|=$\frac{1}{2}$|F1F2|(O為坐標(biāo)原點(diǎn)),且直線OP的斜率為$\sqrt{3}$,則,雙曲線C的離心率為$\sqrt{3}$+1.

查看答案和解析>>

同步練習(xí)冊(cè)答案