.已知函數(shù)
(Ⅰ)若函數(shù)上為增函數(shù),求正實數(shù)的取值范圍;
( Ⅱ) 設(shè),求證:
(1); (2)
(I)由題意知本小題轉(zhuǎn)化為上恒成立問題來解決.
(II)解決本小題的突破點是取,,
并且由(Ⅰ)知上是增函數(shù),因而f(x)的最小值為f(1)=0,,,問題到此基本得以解決.
請考生在第22、23、24三題中任選一題作答,如果多做,則按所做的第一題記分.
(1)由已知得…依題意:恒成立…
即:恒成立也即:恒成立    
    即……
(2) .取,,
一方面,由(Ⅰ)知上是增函數(shù),
,    
.                  
另一方面,設(shè)函數(shù),
上是增函數(shù),又
∴當時,,∴, 即
綜上所述,
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)的圖象是曲線C,直線與曲線
C相切于點(1,3).
(1)求函數(shù)的解析式;
(2)求函數(shù)的遞增區(qū)間;
(3)求函數(shù)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定義域為R,滿足:①
②對任意實數(shù),有.
(Ⅰ)求,的值;
(Ⅱ)判斷函數(shù)的奇偶性與周期性,并求的值;
(Ⅲ)是否存在常數(shù),使得不等式對一切實數(shù)成立.如果存在,求出常數(shù)的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)函數(shù))的最大值為1,對任意,有
(1)求函數(shù)的解析式;
(2)若,其中,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)等于
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的定義域為,若存在非零實數(shù)使得對于任意,有,且,則稱上的高調(diào)函數(shù)。如果定義域為的函數(shù)是奇函數(shù),當時,,且上的4高調(diào)函數(shù),那么實數(shù)的取值范圍是
A..B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,則
A.1B.2C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,則=               .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是一次函數(shù),且滿足
A.B.C.D.

查看答案和解析>>

同步練習冊答案