【題目】已知函數(shù)的圖象關(guān)于直線對稱,則(

A.函數(shù)為奇函數(shù)

B.函數(shù)上單調(diào)遞增

C.,則的最小值為

D.函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象

【答案】AC

【解析】

先根據(jù)對稱軸可得,,代入判斷函數(shù)奇偶性進(jìn)而判斷選項A;先求出的單調(diào)增區(qū)間,再判斷是否為其子集來判斷B;將問題轉(zhuǎn)化為符合條件的區(qū)間至少包含一個最大值,一個最小值,即需包含半個周期,即可判斷C;根據(jù)圖像變換規(guī)則判斷D即可

因為直線的對稱軸,

所以,,

當(dāng),,,

對于選項A,,因為,所以為奇函數(shù),A正確;

對于選項B,,,當(dāng),當(dāng)單調(diào)遞增,B錯誤;

對于選項C,,最小為半個周期,,C正確;

對于選項D,函數(shù)的圖象向右平移個單位長度,,D錯誤

故選:AC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的三棱錐中,是邊長為2的等邊三角形,,的中位線,為線段的中點(diǎn).

1)證明:.

2)若二面角為直二面角,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)《環(huán)境空氣質(zhì)量指數(shù)技術(shù)規(guī)定(試行)》規(guī)定:空氣質(zhì)量指數(shù)在區(qū)間、、、、時,其對應(yīng)的空氣質(zhì)量狀況分別為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染.如圖為某市2019101日至107日的空氣質(zhì)量指數(shù)直方圖,在這7天內(nèi),下列結(jié)論正確的是( )

A.4的方差小于后3的方差

B.7天內(nèi)空氣質(zhì)量狀況為嚴(yán)重污染的天數(shù)為3

C.7天的平均空氣質(zhì)量狀況為良

D.空氣質(zhì)量狀況為優(yōu)或良的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個調(diào)查學(xué)生記憶力的研究團(tuán)隊從某中學(xué)隨機(jī)挑選100名學(xué)生進(jìn)行記憶測試,通過講解100個陌生單詞后,相隔十分鐘進(jìn)行聽寫測試,間隔時間(分鐘)和答對人數(shù)的統(tǒng)計表格如下:

時間(分鐘)

10

20

30

40

50

60

70

80

90

100

答對人數(shù)

98

70

52

36

30

20

15

11

5

5

1.99

1.85

1.72

1.56

1.48

1.30

1.18

1.04

0.7

0.7

時間與答對人數(shù)的散點(diǎn)圖如圖:

附:,,,,對于一組數(shù)據(jù),……,,其回歸直線的斜率和截距的最小二乘估計分別為:.請根據(jù)表格數(shù)據(jù)回答下列問題:

1)根據(jù)散點(diǎn)圖判斷,,哪個更適宣作為線性回歸類型?(給出判斷即可,不必說明理由)

2)根據(jù)(1)的判斷結(jié)果,建立的回歸方程;(數(shù)據(jù)保留3位有效數(shù)字)

3)根據(jù)(2)請估算要想記住的內(nèi)容,至多間隔多少分鐘重新記憶一遍.(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,.

1)當(dāng)時,求的切線方程;

2)若對任意時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).

,使得不等式成立,試求實數(shù)的取值范圍;

)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,離心率為,過作直線與橢圓交于,兩點(diǎn),的周長為8

1)求橢圓的標(biāo)準(zhǔn)方程;

2)問:的內(nèi)切圓面積是否有最大值?若有,試求出最大值;若沒有,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(選修4-4:坐標(biāo)系與參數(shù)方程)

在直角坐標(biāo)系中,半圓C的參數(shù)方程為為參數(shù),),以O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

)求C的極坐標(biāo)方程;

)直線的極坐標(biāo)方程是,射線OM與半圓C的交點(diǎn)為O、P,與直線的交點(diǎn)為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠的檢驗員為了檢測生產(chǎn)線上生產(chǎn)零件的情況,從產(chǎn)品中隨機(jī)抽取了個進(jìn)行測量,根據(jù)所測量的數(shù)據(jù)畫出頻率分布直方圖如下:

如果:尺寸數(shù)據(jù)在內(nèi)的零件為合格品,頻率作為概率.

(1)從產(chǎn)品中隨機(jī)抽取件,合格品的個數(shù)為,求的分布列與期望:

(2)為了提高產(chǎn)品合格率,現(xiàn)提出,兩種不同的改進(jìn)方案進(jìn)行試驗,若按方案進(jìn)行試驗后,隨機(jī)抽取件產(chǎn)品,不合格個數(shù)的期望是:若按方案試驗后,抽取件產(chǎn)品,不合格個數(shù)的期望是,你會選擇哪個改進(jìn)方案?

查看答案和解析>>

同步練習(xí)冊答案