【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機抽取人對共享產(chǎn)品對共享產(chǎn)品是否對日常生活有益進行了問卷調(diào)查,并對參與調(diào)查的人中的性別以及意見進行了分類,得到的數(shù)據(jù)如下表所示:
(Ⅰ)根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過的前提下,認為對共享產(chǎn)品的態(tài)度與性別有關系?
(Ⅱ)現(xiàn)按照分層抽樣從認為共享產(chǎn)品增多對生活無益的人員中隨機抽取人,再從人中隨機抽取人贈送超市購物券作為答謝,求恰有人是女性的概率.
參考公式: .
臨界值表:
【答案】(1)可以(2)
【解析】試題分析:(1)代入卡方公式計算 ,再與參考數(shù)據(jù)比較,確定結論(2)先根據(jù)分層抽樣確定女性中抽取人,男性中抽取人,再利用枚舉法確定總事件數(shù),從中確定滿足條件事件數(shù),最后根據(jù)古典概型概率公式求概率
試題解析:(Ⅰ)依題意,在本次的實驗中, 的觀測值 ,
故可以在犯錯誤的概率不超過的前提下,認為對共享產(chǎn)品的態(tài)度與性別有關系.
(Ⅱ)依題意,應該認為共享產(chǎn)品增多對生活無益的女性中抽取人,記為, , , ,從認為共享產(chǎn)品增多對生活無益的男性中抽取人,記為, ,
從以上人中隨機抽取人,所有的情況為: , , , , , , , , , , , , , , 共種,其中滿足條件的為, , , , , , , 共8種情況.
故所求概率.
科目:高中數(shù)學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關規(guī)定:機動車行經(jīng)人行橫道時,應當減速慢行;遇行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設備所抓拍的5個月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;
(2)交警從這5個月內(nèi)通過該路口的駕駛員中隨機抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關系,得到如下列聯(lián)表:能否據(jù)此判斷有的把握認為“禮讓斑馬線”行為與駕齡有關?
不禮讓斑馬線 | 禮讓斑馬線 | 合計 | |
駕齡不超過1年 | 22 | 8 | 30 |
駕齡1年以上 | 8 | 12 | 20 |
合計 | 30 | 20 | 50 |
參考公式及數(shù)據(jù):
.
(其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復賽資格.某校有800 名學生參加了初賽,所有學生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖所示.
(Ⅰ)求初賽分數(shù)在區(qū)間內(nèi)的頻率;
(Ⅱ)求獲得復賽資格的人數(shù);
(Ⅲ)據(jù)此直方圖估算學生初賽成績的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在原點,離心率等于,它的一個短軸端點恰好是拋物線的焦點.
(1)求橢圓的方程;
(2)已知、是橢圓上的兩點,是橢圓上位于直線兩側(cè)的動點.
①若直線的斜率為,求四邊形面積的最大值;
②當運動時,滿足,試問直線的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有六支足球隊參加單循環(huán)比賽(即任意兩支球隊只踢一場比賽),第一周的比賽中,各踢了場, 各踢了場, 踢了場,且隊與隊未踢過, 隊與隊也未踢過,則在第一周的比賽中, 隊踢的比賽的場數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中:
①“若,則”的否命題是“若,則”;
②“”是“”的必要非充分條件;
③“”是“或”的充分非必要條件;
④“”是“且”的充要條件.
其中正確的序號為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(1)若曲線在處的切線方程為,求實數(shù)的值;
(2)設,若對任意兩個不等的正數(shù),都有恒成立,求實數(shù)的取值范圍;
(3)若在上存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下三個關于圓錐曲線的命題中:
①設為兩個定點,為非零常數(shù),若,則動點的軌跡是雙曲線;
②方程的兩根可分別作為橢圓和雙曲線的離心率;
③雙曲線與橢圓有相同的焦點;
④已知拋物線,以過焦點的一條弦為直徑作圓,則此圓與準線相切,其中真命題為__________.(寫出所有真命題的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com