已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立直角坐標(biāo)系,直線的參數(shù)方程
(Ⅰ)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,在曲線上求一點(diǎn),使點(diǎn)到直線的距離最小,并求出最小距離.

(1)
(2)

解析試題分析:.解:(Ⅰ)由得,,
得,圓.
(Ⅱ)設(shè)點(diǎn)是圓C上的任意一點(diǎn),經(jīng)過伸縮變換得到點(diǎn)
,把代入圓得,
所以曲線 
,則點(diǎn)到直線的距離

∴當(dāng)時(shí),,此時(shí),
∴當(dāng)時(shí),點(diǎn)到直線的距離的最小值為.
考點(diǎn):點(diǎn)到直線的距離,參數(shù)方程與直角坐標(biāo)方程
點(diǎn)評(píng):主要是考查了參數(shù)方程與直角坐標(biāo)方程的互化,以及點(diǎn)到直線的距離公式的求解,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,是過定點(diǎn)且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,取相同單位長(zhǎng)度)中,曲線的極坐標(biāo)方程為.
(I)寫出直線的參數(shù)方程;并將曲線的方程化為直角坐標(biāo)方程;
(II)若曲線與直線相交于不同的兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為
(Ⅰ)將圓的參數(shù)方程化為普通方程,將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)圓、是否相交,若相交,請(qǐng)求出公共弦的長(zhǎng);若不相交,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

極坐標(biāo)系與直角坐標(biāo)系有相同的長(zhǎng)度單位,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸.已知直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.
(Ⅰ)求的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線交于兩點(diǎn),求弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,求過橢圓為參數(shù))的右焦點(diǎn)且與直線為參數(shù))平行的直線的普通方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為,直線l經(jīng)過點(diǎn)P(2,2),傾斜角
(1)寫出圓的標(biāo)準(zhǔn)方程和直線l的參數(shù)方程;
(2)設(shè)l與圓C相交于A、B兩點(diǎn),求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)選修4   -4 :坐標(biāo)系與參數(shù)方程
將圓上各點(diǎn)的縱坐標(biāo)壓縮至原來的,所得曲線記作C;將直線3x-2y-8=0
繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°所得直線記作l
.(I)求直線l與曲線C的方程;
(II)求C上的點(diǎn)到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

某路段的雷達(dá)測(cè)速區(qū)檢測(cè)點(diǎn),對(duì)過往汽車的車速進(jìn)行檢測(cè)所得結(jié)果進(jìn)行抽樣分析,并繪制如圖所示的時(shí)速(單位km/h)頻率分布直方圖,若在某一時(shí)間內(nèi)有200輛汽車通過該檢測(cè)點(diǎn),請(qǐng)你根據(jù)直方圖的數(shù)據(jù)估計(jì)在這200輛汽車中時(shí)速超過65km/h的約有(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,若l:(t為參數(shù))過橢圓C:(φ為參數(shù))的右頂點(diǎn),求常數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案