7.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}y-2≤0\\ x+3≥0\\ x-y-1≤0\end{array}\right.$,則$\frac{x+2y-6}{x-4}$的取值范圍是(  )
A.$[-1,0)∪[\frac{17}{7},+∞)$B.$[-1,0)∪[0,\frac{17}{7})$C.$(-∞,-1]∪[\frac{17}{7},+∞)$D.$[-1,\frac{17}{7}]$

分析 由約束條件作出可行域,再由$\frac{x+2y-6}{x-4}$=1+2×$\frac{y-1}{x-4}$,結(jié)合直線的斜率得答案.

解答 解:由約束條件$\left\{\begin{array}{l}y-2≤0\\ x+3≥0\\ x-y-1≤0\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x=-3}\\{x-y-1=0}\end{array}\right.$,得A(-3,-4),
聯(lián)立$\left\{\begin{array}{l}{y=2}\\{x-y-1=0}\end{array}\right.$,得B(3,2),
而$\frac{x+2y-6}{x-4}$=1+2×$\frac{y-1}{x-4}$,
定點(diǎn)P(4,1)與B連線的斜率為${k}_{PB}=\frac{2-1}{3-4}=-1$,
定點(diǎn)P(4,1)與A連線的斜率為${k}_{PA}=\frac{-4-1}{-3-4}=\frac{5}{7}$,
∴$\frac{x+2y-6}{x-4}$的取值范圍是[-1,$\frac{12}{7}$].
故選:D.

點(diǎn)評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法與數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.等邊三角形ABC的邊長為1,BC上的高為AD,沿高AD折成直二面角,則A到BC的距離是(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{14}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知△ABC的頂點(diǎn)B、C在橢圓$\frac{{x}^{2}}{3}$+y2=1上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長是( 。
A.2$\sqrt{3}$B.4$\sqrt{3}$C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|x2+x-2≤0},B={y|y=2x,x∈R},則A∩B等于( 。
A.B.[1,+∞)C.(0,2]D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=lnx+$\frac{1}{2}{x^2}$+ax存在與直線3x-y=0平行的切線,則實(shí)數(shù)a的取值范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,$\overrightarrow{AB}$=2$\overrightarrow{BC},\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,則下列等式中成立的是( 。
A.$\overrightarrow{c}$=3$\overrightarrow{a}$-$\overrightarrow$B.$\overrightarrow{c}$=3$\overrightarrow$-$\overrightarrow{a}$C.$\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{a}$D.$\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖所示的數(shù)陣中,用A(m,n)表示第m行的第n個(gè)數(shù),依此規(guī)律,則A(9,2)=$\frac{19}{30}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知集合P{a,b},Q={-1,0,1},則從集合P到集合Q的映射共有9種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列從集合A到集合B的對應(yīng)關(guān)系中,既是映射關(guān)系又是函數(shù)關(guān)系的是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案