設(shè)p:關(guān)于x的不等式ax>1的解集是{x|x<0};q:函數(shù)y=lg(ax2-x+a)的定義域?yàn)镽.若p∨q是真命題,p∧q是假命題,則實(shí)數(shù)a的取值范圍是   
【答案】分析:先求得命題p、q為真命題時(shí)a的取值范圍,再根據(jù)題意得命題p、q有且僅有一個(gè)為真命題,分別討論“p真q假”與“p假q真”即可得出實(shí)數(shù)a的取值范圍.
解答:解:當(dāng)命題p為真命時(shí),由x>0得0<a<1,
當(dāng)命題q為真命時(shí),由ax2-x+a>0得△=1-4a2<0且a>0,
∴a>
由命題“p或q”為真,且“p且q”為假,得命題p、q一真一假(10分)
①當(dāng)p真q假時(shí),則 ,得0<a;(12分)
②當(dāng)p假q真時(shí),則 ,得a≥1,(14分)
∴實(shí)數(shù)a的取值范圍是(0,]∪[1,+∞)
故答案為:(0,]∪[1,+∞).
點(diǎn)評(píng):本題考查了命題真假的判斷與應(yīng)用,屬于中檔題,解題時(shí)注意分類(lèi)討論思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P:關(guān)于x的不等式:|x-4|+|x-3|<a的解集是φ,Q:函數(shù)y=lg(ax2-x+a)的定義域?yàn)镽. 如果P和Q有且僅有一個(gè)正確,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)p:關(guān)于x的不等式ax>1的解集是{x|x<0};q:函數(shù)y=lg(ax2-x+a)的定義域?yàn)镽,如果“p∨q”為真命題且“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)p:關(guān)于x的不等式ax>1的解集是{x|x>0},q:方程x2-ax+1=0無(wú)實(shí)根,如果〝p∧q〞為假,〝p∨q〞為真,求滿(mǎn)足條件的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)p:關(guān)于x的不等式logax>0的解集是{x|0<x<1},q:關(guān)于x的不等式x2-x+a2≤0的解集是空集,若p或q為真命題,p且q為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P:關(guān)于x的不等式2|x|<a的解集為∅,Q:函數(shù)y=lg(ax2-x+a)的定義域?yàn)镽.如果P和Q有且僅有一個(gè)正確,求實(shí)數(shù)a的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案