精英家教網 > 高中數學 > 題目詳情
中,角對邊分別是,且滿足
(Ⅰ)求角的大。
(Ⅱ)若,的面積為;求
(Ⅰ);(Ⅱ).

試題分析:(Ⅰ)利用余弦定理,則.(Ⅱ)利用三角形面積公式,得出,而余弦定理,得出,由上兩式得出.
試題解析:(Ⅰ)由余弦定理得,代入,∴, ∵,∴
(Ⅱ) ,
解得:.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知非零向量a,b滿足|b|=1,且bba的夾角為30°,則|a|的取值范圍是(  ).
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

中, ,的中點,若在線段上運動,則的最小值為____________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

中,內角的對邊分別為,并且.
(1)求角的大;
(2)若,求.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

的內角所對的邊滿足,且,則 的值為( 。
A.B.1C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在△ABC中,若a∶b∶c=,則∠_____________。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在△ABC中,邊上的高為,則=       .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知滿足:,,則BC的長(   )
A.2B.1C.1或2D.無解

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在△ABC中,∠A,∠B,∠C所對的邊分別為,,則      

查看答案和解析>>

同步練習冊答案