14.函數(shù)f(x)=$\frac{3x+1}{2-x}$的值域是{y|y≠-3}.

分析 利用分離常數(shù)法,可得函數(shù)的值域.

解答 解:函數(shù)f(x)=$\frac{3x+1}{2-x}$=-3+$\frac{7}{2-x}$,
∵$\frac{7}{2-x}$≠0,
∴f(x)≠-3,
故函數(shù)f(x)=$\frac{3x+1}{2-x}$的值域是{y|y≠-3},
故答案為:{y|y≠-3}

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)的值域,熟練掌握分離常數(shù)法的步驟是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.甲、乙兩位同學(xué)學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間他們參加5項(xiàng)預(yù)賽,成績?nèi)绫恚?br />甲:78 76 74 90 82
乙:90 70 75 85 80
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從平均數(shù)、方差的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)A={0,1,2,3,4,5},B={1,3,6,9},C={3,7,8},則(A∩B)∪C等于( 。
A.{1,3,6,7,8}B.{1,3,7,8}C.{3,7,8}D.{0,1,2,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-a|,g(x)=f(x)+f(x+2).
(Ⅰ)當(dāng)a=-1時(shí),解不等式:f(x)≥4-|2x-1|;
(Ⅱ)若關(guān)于x的不等式f(x)≤1的解集為[0,2],求證:g(x)≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.對于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”,若f(x)=4x-m2x+1+m2-5為定義域R上的“局部奇函數(shù)”,則實(shí)數(shù)m的取值范圍是1-$\sqrt{5}$<m≤2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}xlnx-a{x^2},x≥1\\{a^x},x<1\end{array}$是減函數(shù),則a的取值范圍是[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對邊,且滿足sinA+$\sqrt{3}$cosA=2.
(1)求A的大;
(2)現(xiàn)給出三個(gè)條件①B=45°;②a=2;③c=$\sqrt{3}$b.試從中選出兩個(gè)可以確定△ABC的條件,寫出你的選擇并以此為依據(jù)求△ABC的面積.(注:只能寫出一個(gè)選定方案即可,選多種方案以第一種方案計(jì)分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx-a(x-1),其中a為實(shí)數(shù).
(Ⅰ)討論并求出f(x)的極值;
(Ⅱ)在a<1時(shí),是否存在m>1,使得對任意的x∈(1,m)恒有f(x)>0,并說明理由;
(Ⅲ) 確定a的可能取值,使得存在n>1,對任意的x∈(1,n),恒有|f(x)|<(x-1)2

查看答案和解析>>

同步練習(xí)冊答案