【題目】某店銷售進(jìn)價(jià)為2元/件的產(chǎn)品,該店產(chǎn)品每日的銷售量(單位:千件)與銷售價(jià)格(單位:元/件)滿足關(guān)系式,其中.

(1)若產(chǎn)品銷售價(jià)格為4元/件,求該店每日銷售產(chǎn)品所獲得的利潤(rùn);

(2)試確定產(chǎn)品的銷售價(jià)格,使該店每日銷售產(chǎn)品所獲得的利潤(rùn)最大.(保留1位小數(shù))

【答案】(1)千元 ;(2) 元/件.

【解析】

(1)當(dāng)時(shí),銷量千件,乘以每件產(chǎn)品的盈利,可得該店每日銷售產(chǎn)品所獲得的利潤(rùn);(2)商場(chǎng)每日銷售該產(chǎn)品所獲得的利潤(rùn)等于每日銷售量乘以每件產(chǎn)品的盈利,可得日銷售量的利潤(rùn)函數(shù)為關(guān)于的三次多項(xiàng)式函數(shù),再利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,得出函數(shù)的極大值點(diǎn),從而得出最大值對(duì)應(yīng)的值.

(1)當(dāng)x=4時(shí),

此時(shí)該店每日銷售產(chǎn)品A所獲得的利潤(rùn)為

(4-2)×21=42千元.

(2)該店每日銷售產(chǎn)品A所獲得的利潤(rùn)

=10+4(x-6)2(x-2)

=4x3-56x2+240x-278(2<x<6),

從而f′(x)=12x2-112x+240

=4(3x-10)(x-6)(2<x<6).

f′(x)=0,得x,易知在上,f′(x)>0,函數(shù)f(x)單調(diào)遞增;在上,f′(x)<0,函數(shù)f(x)單調(diào)遞減.

所以x是函數(shù)f(x)在(2,6)內(nèi)的極大值點(diǎn),也是最大值點(diǎn),所以當(dāng)x≈3.3時(shí),函數(shù)f(x)取得最大值.

故當(dāng)銷售價(jià)格為3.3元/件時(shí),利潤(rùn)最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正實(shí)數(shù)a,b,c,函數(shù)f(x)=|x+a||x+b|. (Ⅰ)若a=1,b=3,解關(guān)于x的不等式f(x)+x+1<0;
(Ⅱ)求證:f(1)f(c)≥16abc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面幾種推理過(guò)程是演繹推理的是 (  )

A. 某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人數(shù)超過(guò)50

B. 兩條直線平行,同旁內(nèi)角互補(bǔ),如果∠A與∠B是兩條平行直線的同旁內(nèi)角,則∠AB180°

C. 由平面三角形的性質(zhì),推測(cè)空間四邊形的性質(zhì)

D. 在數(shù)列{an}中,a11,an (an1)(n≥2),由此歸納出{an}的通項(xiàng)公

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為 . (I)求曲線C2的直角坐標(biāo)系方程;
(II)設(shè)M1是曲線C1上的點(diǎn),M2是曲線C2上的點(diǎn),求|M1M2|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的圖象與函數(shù)h(x)x2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.

(1)求函數(shù)f(x)的解析式;

(2)g(x)f(x)g(x)在區(qū)間(0,2]上的值不小于6,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著生活水平的提高,人們對(duì)空氣質(zhì)量的要求越來(lái)越高,某機(jī)構(gòu)為了解公眾對(duì)“車輛限行”的態(tài)度,隨機(jī)抽查50人,并將調(diào)查情況進(jìn)行整理后制成如表:

年齡(歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,60)

頻數(shù)

10

10

10

10

10

贊成人數(shù)

3

5

6

7

9


(1)世界聯(lián)合國(guó)衛(wèi)生組織規(guī)定:[15,45)歲為青年,(45,60)為中年,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)以下2×2列聯(lián)表:

青年人

中年人

合計(jì)

不贊成

贊成

合計(jì)


(2)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為贊成“車柄限行”與年齡有關(guān)? 附: ,其中n=a+b+c+d
獨(dú)立檢驗(yàn)臨界值表:

P(K2≥k)

0.100

0.050

0.025

0.010

k0

2.706

3.841

5.024

6.635


(3)若從年齡[15,25),[25,35)的被調(diào)查中各隨機(jī)選取1人進(jìn)行調(diào)查,設(shè)選中的兩人中持不贊成“車輛限行”態(tài)度的人員為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,橢圓C的極坐標(biāo)方程為 ,且直線l經(jīng)過(guò)橢圓C的右焦點(diǎn)F.
(1)求橢圓C的內(nèi)接矩形PMNQ面積的最大值;
(2)若直線l與橢圓C交于A,B兩點(diǎn),求|FA||FB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,的中點(diǎn).

求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐P﹣ABCD的底面ABCD是平行四邊形,△PAB與△ABC是等腰三角形,PA⊥平面ABCD,PA=2,AD=2 ,AC⊥BA,點(diǎn)E是線段AB上靠近點(diǎn)B的一個(gè)三等分點(diǎn),點(diǎn)F、G分別在線段PD,PC上.
(Ⅰ)證明:CD⊥AG;
(Ⅱ)若三棱錐E﹣BCF的體積為 ,求 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案