【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2an﹣2(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足 = ﹣ ﹣…+(﹣1)n+1 ,求數(shù)列{bn}的通項(xiàng)公式;
(3)在(2)的條件下,設(shè)cn=2n+λbn , 問是否存在實(shí)數(shù)λ使得數(shù)列{cn}(n∈N*)是單調(diào)遞增數(shù)列?若存在,求出λ的取值范圍;若不存在,請(qǐng)說明你的理由.
【答案】
(1)解:由Sn=2an﹣2(n∈N*),可得a1=2a1﹣2,解得a1=2;
n≥2時(shí),an=Sn﹣Sn﹣1=2an﹣2﹣(2an﹣1﹣2),化為:an=2an﹣1.
∴數(shù)列{an}是等比數(shù)列,公比為2,首項(xiàng)為2.∴an=2n.
(2)解:∵ = = ﹣ ﹣…+(﹣1)n+1 ,
∴ = ﹣ ﹣…+ ,
∴ =(﹣1)n+1 ,∴bn=(﹣1)n .
當(dāng)n=1時(shí), = ,解得b1= .∴bn= .
(3)解:cn=2n+λbn,
∴n≥3時(shí),cn=2n+λ ,cn﹣1=2n﹣1+(﹣1)n﹣1λ ,
cn﹣cn﹣1=2n﹣1+ >0,即(﹣1)nλ>﹣ .
① 當(dāng)n為大于或等于4的偶數(shù)時(shí),λ>﹣ ,即λ>﹣ ,當(dāng)且僅當(dāng)n=4時(shí),λ>﹣ .
②當(dāng)n為大于或等于3的奇數(shù)時(shí),λ< ,當(dāng)且僅當(dāng)n=3時(shí),λ< .
當(dāng)n=2時(shí),c2﹣c1= ﹣ >0,即λ<8.
綜上可得:λ的取值范圍是 .
【解析】(1)由Sn=2an﹣2(n∈N*),可得a1=2a1﹣2,解得a1=2;n≥2時(shí),an=Sn﹣Sn﹣1 , 化為:an=2an﹣1 . 即可得出.(2) = = ﹣ ﹣…+(﹣1)n+1 ,n≥2時(shí), = ﹣ ﹣…+ ,相減可得:bn=(﹣1)n .當(dāng)n=1時(shí), = ,解得b1= .(3)cn=2n+λbn , n≥3時(shí),cn=2n+λ ,cn﹣cn﹣1=2n﹣1+ >0,即(﹣1)nλ>﹣ .①當(dāng)n為大于或等于4的偶數(shù)時(shí),λ>﹣ .②當(dāng)n為大于或等于3的奇數(shù)時(shí),λ< .當(dāng)n=2時(shí),c2﹣c1>0,即λ<8.即可得出.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)列的前n項(xiàng)和(數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系),還要掌握數(shù)列的通項(xiàng)公式(如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在直角梯形BB1C1C中,∠CC1B1=90°,BB1∥CC1 , CC1=B1C1=2BB1=2,D是CC1的中點(diǎn).四邊形AA1C1C可以通過直角梯形BB1C1C以CC1為軸旋轉(zhuǎn)得到,且二面角B1﹣CC1﹣A為120°.
(1)若點(diǎn)E是線段A1B1上的動(dòng)點(diǎn),求證:DE∥平面ABC;
(2)求二面角B﹣AC﹣A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知斜三棱柱ABC﹣A1B1C1的所有棱長均為2,∠B1BA= ,且側(cè)面ABB1A1⊥底面ABC. (Ⅰ)證明:B1C⊥AC1
(Ⅱ)若M為A1C1的中點(diǎn),求二面角A﹣B1M﹣A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對(duì)稱軸,且f(x)在( , )單調(diào),則ω的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)是定義在區(qū)間(0,+∞)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且滿足xf′(x)+2f(x)>0,則不等式 的解集為( )
A.{x>﹣2011}
B.{x|x<﹣2011}
C.{x|﹣2011<x<0}
D.{x|﹣2016<x<﹣2011}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+ )=2 .
(1)寫出C1的普通方程和C2的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P在C1上,點(diǎn)Q在C2上,求|PQ|的最小值及此時(shí)P的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S4=4S2 , a2n=2an+1﹣3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足a1b1+a2b2+…+anbn=3﹣ ,求{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣m|﹣2|x﹣1|(m∈R)
(1)當(dāng)m=3時(shí),求函數(shù)f(x)的最大值;
(2)解關(guān)于x的不等式f(x)≥0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com