精英家教網 > 高中數學 > 題目詳情

【題目】要得到函數y= sin2x+cos2x的圖象,只需將函數y=2sin2x的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位

【答案】C
【解析】解:函數y= sin2x+cos2x=2sin(2x+ )=2sin2(x+ ),

故把函數y=2sin2x的圖象向左平移 個單位,可得函數y= sin2x+cos2x的圖象,

所以答案是:C.

【考點精析】本題主要考查了函數y=Asin(ωx+φ)的圖象變換的相關知識點,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數的圖象;再將函數的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數的圖象;再將函數的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數的圖象才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示,MCN是某海灣旅游區(qū)的一角,為營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定建立面積為4 平方千米的三角形主題游戲樂園ABC,并在區(qū)域CDE建立水上餐廳.已知∠ACB=120°,∠DCE=30°.
(1)設AC=x,AB=y,用x表示y,并求y的最小值;
(2)設∠ACD=θ(θ為銳角),當AB最小時,用θ表示區(qū)域CDE的面積S,并求S的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:(x+2)2+y2=5,直線l:mx﹣y+1+2m=0,m∈R.
(1)求證:對m∈R,直線l與圓C總有兩個不同的交點A、B;
(2)求弦AB的中點M的軌跡方程,并說明其軌跡是什么曲線;
(3)是否存在實數m,使得圓C上有四點到直線l的距離為 ?若存在,求出m的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= +ax,x>1.
(1)若函數f(x)在 處取得極值,求a的值;
(2)若方程(2x﹣m)lnx+x=0在(1,e]上有兩個不等實根,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知A(1,﹣1),B(2,2),C(3,0),求點D的坐標,使直線CD⊥AB,且CB∥AD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若圓C:x2+(y﹣2)2=5與恒過點P(0,1)的直線交于A,B兩點,則弦AB的中點M的軌跡方程為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】游樂場推出了一項趣味活動,參加活動者需轉動如圖所示的轉盤兩次,每次轉動后,待轉盤停止轉動時,記錄指針所指區(qū)域中的數,設兩次記錄的數分別為x,y,獎勵規(guī)則如下:
①若xy≤3,則獎勵玩具一個;②若xy≥8,則獎勵水杯一個;③其余情況獎勵飲料一瓶,假設轉盤質地均勻,四個區(qū)域劃分均勻,小亮準備參加此項活動.
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)是定義在[﹣1,1]上的奇函數,f(﹣1)=﹣1,且對任意a,b∈[﹣1,1],當a≠b時,都有 ;
(1)解不等式f ;
(2)若f(x)≤m2﹣2km+1對所有x∈[﹣1,1],k∈[﹣1,1]恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐S﹣ABC中,M、N分別是棱SC、BC的中點,且MN⊥AM,若AB=2 ,則此正三棱錐外接球的體積是( )

A.12π
B.4 π
C. π
D.12 π

查看答案和解析>>

同步練習冊答案