已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,直線l:y=
3
(x-4)
關(guān)于直線l1:y=
b
a
x
對(duì)稱的直線l′與x軸平行.
(1)求雙曲線的離心率;
(2)若點(diǎn)M(4,0)到雙曲線上的點(diǎn)P的最小距離等于1,求雙曲線的方程.
(1)∵雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,
直線l:y=
3
(x-4)
關(guān)于直線l1:y=
b
a
x
對(duì)稱的直線l′與x軸平行,
∴k=
3
,k1=
b
a
,k′=0,
∴|
3
-
b
a
1+
3
b
a
|=|
0-
b
a
1-0•
b
a
|,
解得
b
a
=
3
3
,或
b
a
=-
3
(舍).
b
a
=
3
3
,∴e=
c2
a2
=
1+
b2
a2
=
1+
1
3
=
2
3
3

∴雙曲線的離心率e=
2
3
3

(2)∵
b
a
=
3
3
,∴a2=3b2,∴設(shè)雙曲線為
x2
3b2
-
y2
b2
=1
,
∵點(diǎn)M(4,0)到雙曲線上的點(diǎn)P的最小距離等于1,
∴|
3
b
-4|=1,
解得
3
b
=5,或
3
b
=3.
當(dāng)
3
b
=5時(shí),b=
5
3
,∴b2=
25
3
,3b2
=25,
雙曲線方程為
x2
25
-
3y2
25
=1
;
當(dāng)
3
b
=3時(shí),b=
3
,b2=3,3b2=9,
雙曲線方程為
x2
9
-
y2
3
=1

∴雙曲線的方程為
x2
25
-
3y2
25
=1或
x2
9
-
y2
3
=1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
2
2
,A1,A2分別是橢圓C的左、右兩個(gè)頂點(diǎn),點(diǎn)F是橢圓C的右焦點(diǎn).點(diǎn)D是x軸上位于A2右側(cè)的一點(diǎn),且滿足
1
|A1D|
+
1
|A2D|
=
2
|FD|
=2

(1)求橢圓C的方程以及點(diǎn)D的坐標(biāo);
(2)過點(diǎn)D作x軸的垂線n,再作直線l:y=kx+m與橢圓C有且僅有一個(gè)公共點(diǎn)P,直線l交直線n于點(diǎn)Q.求證:以線段PQ為直徑的圓恒過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線l:y=ax+1與雙曲線3x2-y2=1有兩個(gè)不同的交點(diǎn),
(1)求a的取值范圍;
(2)設(shè)交點(diǎn)為A,B,是否存在直線l使以AB為直徑的圓恰過原點(diǎn),若存在就求出直線l的方程,若不存在則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知頂點(diǎn)在原點(diǎn)、對(duì)稱軸為坐標(biāo)軸且開口向右的拋物線過點(diǎn)M(4,-4).
(1)求拋物線的方程;
(2)過拋物線焦點(diǎn)F的直線l與拋物線交于不同的兩點(diǎn)A、B,若|AB|=8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),已知點(diǎn)(1,e)和(e,
3
2
)都在橢圓上,其中e為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)A、B是橢圓上位于x軸上方的兩點(diǎn),且直線AF1與直線BF2平行,若|AF1|-|BF2|=
6
2
,求直線AF的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓M、拋物線N的焦點(diǎn)均在x軸上的,且M的中心和M的頂點(diǎn)均為原點(diǎn)O,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
x3-24
2
y-2
3
0-4
2
2
(Ⅰ)求M,N的標(biāo)準(zhǔn)方程;
(Ⅱ)已知定點(diǎn)A(1,
1
2
),過原點(diǎn)O作直線l交橢圓M于B,C兩點(diǎn),求△ABC面積的最大值和此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓
x2
6
+
y2
5
=1
內(nèi)的一點(diǎn)P(2,-1)的弦,恰好被點(diǎn)P平分,則這條弦所在直線方程(  )
A.y=
5
3
x-
5
6
B.y=
5
3
x-
13
3
C.y=-
5
3
x+
5
6
D.y=
5
3
x+
11
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

y軸上兩定點(diǎn)B1(0,b)、B2(0,-b),x軸上兩動(dòng)點(diǎn)M,N.P為B1M與B2N的交點(diǎn),點(diǎn)M,N的橫坐標(biāo)分別為XM、XN,且始終滿足XMXN=a2(a>b>0且為常數(shù)),試求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y2=-x與直線y=k(x+1)相交于A、B兩點(diǎn).
(1)求證:OA⊥OB;
(2)當(dāng)△OAB的面積等于
10
時(shí),求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案