在xoy平面上有一系列點P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對每個正整數(shù)n,以點Pn為圓心的⊙Pn與x軸及射線y=
3
x,(x≥0)都相切,且⊙Pn與⊙Pn+1彼此外切.若x1=1,且xn+1<xn(n∈N*).
(1)求證:數(shù)列{xn}是等比數(shù)列,并求數(shù)列{xn}的通項公式;
(2)設數(shù)列{an}的各項為正,且滿足an
xnan-1
xn+an-1
,a1
=1,
求證:a1x1+a2x2+a3x3+…+anxn
5
4
-
1
3n-1
,(n≥2)
(3)對于(2)中的數(shù)列{an},當n>1時,求證:(1-an)2[
a
2
2
(1-
a
2
2
)
2
+
a
3
3
(1-
a
3
3
)
2
+…+
a
n
n
(1-
a
n
n
)
2
]>
4
5
-
1
1+an+
a
2
n
+…+
a
n
n
分析:(1)由圓Pn與P(n+1)相切,且P(n+1)與x軸相切可知Rn=Yn,R(n+1)=Y(n+1),且兩圓心間的距離就等于兩半徑之和進而得到
(xn-xn+1)2+(yn-yn+1)2
=
4
3
(xn-xn+1)2
=
3
3
(xn+xn+1)
,整理得證.
(2)由an
xnan-1
xn+an-1
,可證an
2
3n-1
,進而得Sn=a1x1+a2x2+a3x3+…+anxn≤1×1+
2
8
×
1
3
+
2
26
×
1
9
+…+
2
3n-1
×
1
3n-1
從而可證
(3)先證a1>a2>…>an>0,再令:bk=
(1-an)2
a
k
k
(1-
a
k
k
)
2
,從而bk=
(1-an)2
a
k
k
(1-
a
k
k
)
2
(1-ak)2
a
k
k
(1-
a
k
k
)
2
=
a
k
k
(1+ak+
a
2
k
+…
a
k-1
k
)
2
利于放縮法可證.
解答:解:(1)點列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…必在射線y=
3
3
x,(x≥0)
,
yn=
xn
3
為⊙Pn的半徑,
∵⊙Pn與⊙Pn+1外切,
(xn-xn+1)2+(yn-yn+1)2
=
4
3
(xn-xn+1)2
=
3
3
(xn+xn+1)
①…(3分)
化簡①式得:3xn+12-10xnxn+1+3xn2=0,解得:xn+1=3xnxn+1=
1
3
xn
,
∵xn+1<xn,∴xn+1=
1
3
xn
,∴數(shù)列{xn}是等比數(shù)列,∵x1=1,則xn=(
1
3
)n-1
…(5分)
(2)an
xnan-1
xn+an-1
,而an>0,xn>0,
1
an
1
xn
+
1
an-1
1
an
-
1
an-1
1
xn
,∴
1
an
-
1
a1
1
x2
+
1
x3
+…+
1
xn
,∵a1=1,
1
an
≥1+
1
x2
+
1
x3
+…+
1
xn
=1+3+32+…+3n-1=
3n-1
2

an
2
3n-1
…(8分)
Sn=a1x1+a2x2+a3x3+…+anxn,Tn=
5
4
-
1
3n-1

Sn=a1x1+a2x2+a3x3+…+anxn≤1×1+
2
8
×
1
3
+
2
26
×
1
9
+…+
2
3n-1
×
1
3n-1

當n=2時,S2≤1+
1
12
=
13
12
,T2=
5
4
-
1
32-1
=
9
8
,必有S2<T2
當n>2時,
anxn
2
(3n-1)3n-1
2
(3n-1)(3n-1-1)
2•3n-1
(3n-1)(3n-1-1)
=
1
3n-1-1
-
1
3n-1

Sn<1+
1
12
+(
1
32-1
-
1
33-1
)+(
1
33-1
-
1
34-1
)+…+(
1
3n-1-1
-
1
3n-1
)
=1+
1
12
+
1
8
-
1
3n-1
=
29
24
-
1
3n-1
5
4
-
1
3n-1
…(13分)
(3)∵
1
an
-
1
an-1
1
xn
>0∴anan-1
,∴1=a1>a2>…>an>0
令:bk=
(1-an)2
a
k
k
(1-
a
k
k
)
2
,則bk=
(1-an)2
a
k
k
(1-
a
k
k
)
2
(1-ak)2
a
k
k
(1-
a
k
k
)
2
=
a
k
k
(1+ak+
a
2
k
+…
a
k-1
k
)
2
a
k
k
(1+ak+
a
2
k
+…
a
k-1
k
)(1+ak+
a
2
k
+…
a
k-1
k
+
a
k
k
)
=
1
1+ak+
a
2
k
+…
a
k-1
k
-
1
1+ak+
a
2
k
+…
a
k-1
k
+
a
k
k
1
1+ak+
a
2
k
+…
a
k-1
k
-
1
1+ak+1+
a
2
k+1
+…
a
k-1
k+1
+
a
k
k+1
=
1
k
i=1
a
i-1
k
-
1
k+1
i=1
a
i-1
k+1
…(18分)
∵0<a2
2
32-1
=
1
4
(1-an)2[
a
2
2
(1-
a
2
2
)
2
+
a
3
3
(1-
a
3
3
)
2
+…+
a
n
n
(1-
a
n
n
)
2
]=
n
k=2
bk
n
k=2
(
1
k
i=1
a
i-1
k
-
1
k+1
i=1
a
i-1
k+1
)
=
1
1+a2
-
1
1+an+
a
2
n
+…+
a
n
n
4
5
-
1
1+an+
a
2
n
+…+
a
n
n
…20分.
點評:本題以相切為素材,考查數(shù)列與解析幾何的綜合,考查數(shù)列與不等式,技巧性強,難度大.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在xoy平面上有一系列點P1(x1,y1),P2(x2,y2)…,Pn(xn,yn),…,(n∈N*),點Pn在函數(shù)y=x2(x≥0)的圖象上,以點Pn為圓心的圓Pn與x軸都相切,且圓Pn與圓Pn+1又彼此外切.若x1=1,且xn+1<xnx1=1.
(I)求數(shù)列{xn}的通項公式;
(II)設圓Pn的面積為Sn,Tn=
S1
+
S2
+…+
Sn
,求證:Tn
3
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在xoy平面上有一系列點P1(x1,y1)、P2(x2,y2)┉Pn(xn,yn),對于每個自然數(shù)n,點Pn(xn,yn)位于函數(shù)y=x2(x≥0)圖象上,以點Pn為圓心的⊙Pn與x軸相切,又與⊙Pn+1外切,若x1=1,xn+1<xn(n∈N+),則數(shù)列{xn}的通項公式xn=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在xOy平面上有一系列點P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對每個自然數(shù)n,點Pn位于函數(shù)y=x2(x≥0)的圖象上,以點Pn為圓心的⊙Pn與x軸都相切,且⊙Pn與⊙Pn+1又彼此外切.若x1=1且xn+1<xn?(n∈N*).

(1)求證:數(shù)列{1xn}是等差數(shù)列;

(2)設⊙Pn的面積為Sn,Tn=+…+,求證:Tn.

查看答案和解析>>

科目:高中數(shù)學 來源:2008年浙江省溫州市搖籃杯高一數(shù)學競賽試卷(解析版) 題型:解答題

在xoy平面上有一系列點P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對每個正整數(shù)n,以點Pn為圓心的⊙Pn與x軸及射線y=x,(x≥0)都相切,且⊙Pn與⊙Pn+1彼此外切.若x1=1,且xn+1<xn(n∈N*).
(1)求證:數(shù)列{xn}是等比數(shù)列,并求數(shù)列{xn}的通項公式;
(2)設數(shù)列{an}的各項為正,且滿足an=1,
求證:a1x1+a2x2+a3x3+…+anxn,(n≥2)
(3)對于(2)中的數(shù)列{an},當n>1時,求證:

查看答案和解析>>

同步練習冊答案