函數(shù)f(x)=2|x-1|的遞增區(qū)間為


  1. A.
    R
  2. B.
    (-∞,1]
  3. C.
    [1,+∞)
  4. D.
    [0,+∞)
C
分析:先去絕對值符號,把函數(shù)化為分段函數(shù),再借助指數(shù)函數(shù)的單調(diào)性判斷每段上的單調(diào)性即可.
解答:f(x)=2|x-1去絕對值符號,變形為
f(x)=,
∴當x≥1時,f(x)為增函數(shù),當x<1時,f(x)為減函數(shù),
∴f(x)的遞增區(qū)間為[1,+∞)
故選C
點評:本題主要考查絕對值函數(shù)的單調(diào)性的判斷,必須去絕對值符號后再判斷.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

8、已知函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(x+1)+f(x)=3,當x∈[0,1]時,f(x)=2-x,則f(-2 009.9)=
1.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面對命題“函數(shù)f(x)=x+
1
x
是奇函數(shù)”的證明不是綜合法的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)為定義在R上的偶函數(shù),且滿足f(x+1)+f(x)=1,當x∈[1,2]時,f(x)=2-x,則f(-2013)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案