已知函數(shù),.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)若在區(qū)間上是減函數(shù),求的取值范圍.
(Ⅰ)(Ⅱ)或.
解析試題分析:(Ⅰ)求函數(shù)的導(dǎo)數(shù),切線的斜率 ,利用點(diǎn)斜式寫出直線方程, (Ⅱ)求函數(shù) 導(dǎo)數(shù),解方程 ,確定函數(shù)的單調(diào)區(qū)間 ,又有 的取值范圍.
試題解析:(Ⅰ)當(dāng)時(shí),,
又,所以.又,
所以所求切線方程為 ,即.
所以曲線在點(diǎn)處的切線方程為. 6分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/83/3/hqq7e1.png" style="vertical-align:middle;" />,
令,得或. 8分
當(dāng)時(shí),恒成立,不符合題意. 9分
當(dāng)時(shí),的單調(diào)遞減區(qū)間是,若在區(qū)間上是減函數(shù),
則解得. 11分
當(dāng)時(shí),的單調(diào)遞減區(qū)間是,若在區(qū)間上是減函數(shù),
則,解得.
綜上所述,實(shí)數(shù)的取值范圍是或. 13分
考點(diǎn):函數(shù)的導(dǎo)數(shù)求法,及導(dǎo)數(shù)的幾何意義及應(yīng)用,直線點(diǎn)斜式方程,解方程不等式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),,且在點(diǎn)(1,)處的切線方程為。
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)設(shè)函數(shù),若方程有且僅有四個(gè)解,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(1) 當(dāng)時(shí),求的單調(diào)區(qū)間;
(2) 若當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若函數(shù)的圖象與直線為常數(shù))相切,并且切點(diǎn)的橫坐標(biāo)依次成等差數(shù)列,且公差為
(I)求的值;
(Ⅱ)若點(diǎn)是圖象的對(duì)稱中心,且,求點(diǎn)A的坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)若求在處的切線方程;
(2)若在區(qū)間上恰有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(為常數(shù)).
(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(2)若,且對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),(其中,),且函數(shù)的圖象在點(diǎn)處的切線與函數(shù)的圖象在點(diǎn)處的切線重合.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若,滿足,求實(shí)數(shù)的取值范圍;
(Ⅲ)若,試探究與的大小,并說(shuō)明你的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com