已知
a
=(cosθ,1),
b
=(2,-sinθ),若
a
b
,則tanθ的值為
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,三角函數(shù)的求值,平面向量及應(yīng)用
分析:由向量垂直可得數(shù)量積為0,再由同角三角函數(shù)的基本關(guān)系可得.
解答: 解:∵
a
=(cosθ,1),
b
=(2,-sinθ),且
a
b

a
b
=2cosθ-sinθ=0,∴sinθ=2cosθ,
∴tanθ=
sinθ
cosθ
=2
故答案為:2.
點(diǎn)評(píng):本題考查平面向量的數(shù)量積,涉及三角函數(shù)的運(yùn)算,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x),下列函數(shù)圖象關(guān)于直線x=3對(duì)稱的有(  )
①y=f(x+3)②y=f(x-3)③y=f(3-x)  ④y=-f(x+3)⑤y=-f(x-3)⑥y=-f(3-x).
A、②和③,⑤和⑥
B、①和③
C、③和⑤
D、④和⑤,②和③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3cos2x+2sinxcosx+sin2x.
(1)求f(x)的最大值,并求出此時(shí)x的值;
(2)寫(xiě)出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=ax2-2ax+c在區(qū)間[0,1]上單調(diào)遞減,且f(n)≤f(0),則實(shí)數(shù)n的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)在區(qū)間[-2,a]上是奇函數(shù),若f(-2)=11,則f(a)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(1-x)(1+x)3的展開(kāi)式中,x3的系數(shù)是( 。
A、2B、-2C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,直線ρsinθ=3被圓ρ=4sinθ截得的弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a3+a9=4,則S11等于( 。
A、12B、18C、22D、44

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2,1),
b
=(x,y),則“x=-4且y=-2”是“
a
b
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案