已知可行域的外接圓C與軸交于點(diǎn)A1、A2,橢圓C1以線段A1A2為短軸,離心率
(Ⅰ)求圓C及橢圓C1的方程;
(Ⅱ)過(guò)橢圓C1上一點(diǎn)P(不在坐標(biāo)軸上)向圓C引兩條切線PA、PB、A、B為切點(diǎn),直線AB分別與x軸、y軸交于點(diǎn)M、N.求△MON面積的最小值.(O為原點(diǎn)).
解析:(Ⅰ)由題意可知,可行域是以及點(diǎn)為頂點(diǎn)的三角形,∵,∴為直角三角形, ┅┅┅┅┅┅┅2分
∴外接圓C以原點(diǎn)O為圓心,線段A1A2為直徑,故其方程為.
∵2b=4,∴b=2.又,可得.
∴所求橢圓C1的方程是. ┅┅┅┅┅┅┅4分
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),,OA的斜率為,則PA的斜率為,則PA的方程為:化簡(jiǎn)為:,
同理PB的方程為 ┅┅┅┅┅┅┅6分
又PA、PB同時(shí)過(guò)P點(diǎn),則x1x0+y1y0=4,x2x0+y2y0=4,
∴AB的直線方程為:x0x+y0y=4 ┅┅┅┅┅┅┅8分
(或者求出以O(shè)P為直徑的圓,然后求出該圓與圓C的公共弦所在直線方程即為AB的方程)
從而得到、所以 ┅┅8分
當(dāng)且僅當(dāng). ┅┅┅┅┅┅┅12分
(或者利用橢圓的參數(shù)方程、函數(shù)求最值等方法求的最大值)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:期末題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年海南省儋州市洋浦中學(xué)高三(下)3月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省南通市通州區(qū)三余中學(xué)高三檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com