分析 (1)甲獲得比賽勝利包含三種情況:①甲連勝三局;②前三局甲兩勝一負(fù),第四局甲勝;③前四局甲兩勝兩負(fù),第五局甲勝.由此能求出甲獲得比賽勝利的概率.
(2)由已知得X的可能取值為3,4,5,分別求出相應(yīng)的概率,由此能求出隨機(jī)變量X的分布列和數(shù)學(xué)期望.
解答 解:(1)甲獲得比賽勝利包含三種情況:
①甲連勝三局;②前三局甲兩勝一負(fù),第四局甲勝;③前四局甲兩勝兩負(fù),第五局甲勝.
∴甲獲得比賽勝利的概率:
p=$(\frac{2}{3})^{3}$+${C}_{3}^{2}(\frac{2}{3})^{2}(\frac{1}{3})×(\frac{2}{3})$+C${\;}_{4}^{2}$($\frac{2}{3}$)2($\frac{1}{3}$)2×$(\frac{2}{3})$=$\frac{64}{81}$.
(2)由已知得X的可能取值為3,4,5,
P(X=3)=$(\frac{2}{3})^{3}+(\frac{1}{3})^{3}$=$\frac{1}{3}$,
P(X=4)=${C}_{3}^{2}(\frac{2}{3})^{2}(\frac{1}{3})×(\frac{2}{3})$+${C}_{3}^{2}(\frac{1}{3})^{2}(\frac{2}{3})$×$(\frac{1}{3})$=$\frac{10}{27}$,
P(X=5)=C${\;}_{4}^{2}$($\frac{2}{3}$)2($\frac{1}{3}$)2×$(\frac{2}{3})$+C${\;}_{4}^{2}$($\frac{1}{3}$)2($\frac{2}{3}$)2×$(\frac{1}{3})$=$\frac{8}{27}$,
∴隨機(jī)變量X的分布列為:
X | 3 | 4 | 5 |
P | $\frac{1}{3}$ | $\frac{10}{27}$ | $\frac{8}{27}$ |
點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意n次獨(dú)立重復(fù)試驗(yàn)中事件A恰好發(fā)生k次的概率計(jì)算公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
天氣 | 雨 | 雨 | 雨 | 雨 | 雨 | 雨 | |||||||||
溫度等級(jí) | C | D | C | A | B | C | C | A | D | B | B | C | A | C | A |
日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
天氣 | 雨 | 雨 | 雨 | 雨 | 雨 | ||||||||||
溫度等級(jí) | D | C | A | A | D | D | D | B | B | C | D | C | D | D | B |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com