【題目】對一切實數(shù)x,不等式x2+a|x|+1≥0恒成立,則實數(shù)a的取值范圍是(
A.(﹣∞,﹣2)
B.[﹣2,+∞)
C.[﹣2,2]
D.[0,+∞)

【答案】B
【解析】解:當x=0時,不等式x2+a|x|+1≥0恒成立,當x≠0時,則有 a≥ =﹣(|x|+ ),故a大于或等于﹣(|x|+ ) 的最大值.

由基本不等式可得 (|x|+ )≥2,∴﹣(|x|+ )≥﹣2,即﹣(|x|+ ) 的最大值為﹣2,

故實數(shù)a的取值范圍是[﹣2,+∞),

故選B.

【考點精析】關(guān)于本題考查的基本不等式和二次函數(shù)的性質(zhì),需要了解基本不等式:,(當且僅當時取到等號);變形公式:;增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年,嘉積中學(xué)即將迎來100周年校慶.為了了解在校同學(xué)們對嘉積中學(xué)的看法,學(xué)校進行了調(diào)查,從三個年級任選三個班,同學(xué)們對嘉積中學(xué)的看法情況如下:

對嘉積中學(xué)的看法

非常好,嘉積中學(xué)奠定了
我一生成長的起點

很好,我的中學(xué)很快樂很充實

A班人數(shù)比例

B班人數(shù)比例

C班人數(shù)比例

(Ⅰ)從這三個班中各選一個同學(xué),求恰好有2人認為嘉積中學(xué)“非常好”的概率(用比例作為相應(yīng)概率);
(Ⅱ)若在B班按所持態(tài)度分層抽樣,抽取9人,在這9人中任意選取3人,認為嘉積中學(xué)“非常好”的人數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系 中,直線 的參數(shù)方程為 為參數(shù)).它與曲線 交于 兩點.
(1)求 的長;
(2)在以 為極點, 軸的正半軸為極軸建立極坐標系,設(shè)點 的極坐標為 ,求點 到線段 中點 的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于的一元二次方程

(1)若是從0,1,2,3,4五個數(shù)中任取的一個數(shù),是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;

(2)若是從區(qū)間上任取的一個數(shù),是從區(qū)間上任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xoy中,曲線C的參數(shù)方程為 (t為參數(shù),a>0)以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,已知直線l的極坐標方程為 . (Ⅰ)設(shè)P是曲線C上的一個動點,當a=2時,求點P到直線l的距離的最小值;
(Ⅱ)若曲線C上的所有點均在直線l的右下方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+a(x﹣1),其中a∈R. (Ⅰ) 當a=﹣1時,求證:f(x)≤0;
(Ⅱ) 對任意t≥e,存在x∈(0,+∞),使tlnt+(t﹣1)[f(x)+a]>0成立,求a的取值范圍.
(其中e是自然對數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,若方程f(f(x))=a(a>0)恰有兩個不相等的實根x1 , x2 , 則e e 的最大值為(
A.
B.2(ln2﹣1)
C.
D.ln2﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個結(jié)論: ① (x2+sinx)dx=18,則a=3;
②用相關(guān)指數(shù)R2來刻畫回歸效果,R2的值越大,說明模型的擬合效果越差;
③若f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=﹣f(x),則函數(shù)f(x)的圖象關(guān)于x=1對稱;
④已知隨機變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則P(ξ<﹣2)=0.21;
其中正確結(jié)論的序號為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為評估兩套促銷活動方案(方案1運作費用為5元/件;方案2的運作費用為2元/件),在某地區(qū)部分營銷網(wǎng)點進行試點(每個試點網(wǎng)點只采用一種促銷活動方案),運作一年后,對比該地區(qū)上一年度的銷售情況,制作相應(yīng)的等高條形圖如圖所示.
(1)請根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動方案(不必說明理由);
(2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動運作費用),為制定本年度該地區(qū)的產(chǎn)品銷售價格,統(tǒng)計上一年度的8組售價xi(單位:元/件,整數(shù))和銷量yi(單位:件)(i=1,2,…,8)如下表所示:

售價x

33

35

37

39

41

43

45

47

銷量y

840

800

740

695

640

580

525

460

①請根據(jù)下列數(shù)據(jù)計算相應(yīng)的相關(guān)指數(shù)R2 , 并根據(jù)計算結(jié)果,選擇合適的回歸模型進行擬合;
②根據(jù)所選回歸模型,分析售價x定為多少時?利潤z可以達到最大.

49428.74

11512.43

175.26

124650

(附:相關(guān)指數(shù)

查看答案和解析>>

同步練習冊答案