A、B、C、D、E五個(gè)人排成一排,其中AB在一起C不在排頭.一共有
 
種排法.
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:應(yīng)用題,排列組合
分析:利用間接法,即可得出結(jié)論.
解答: 解:∵AB在一起,∴捆綁,共有
A
4
4
A
2
2
=48種,
其中C在排頭,有
A
3
3
A
2
2
=12種,
∴AB在一起C不在排頭,一共有48-12=36種排法.
故答案為:36.
點(diǎn)評(píng):本題考查計(jì)數(shù)原理的應(yīng)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知tanα=-4,求
4sinα+2cosα
3sinα+5cosα
的值;
(2)已知sin(3π+θ)=
1
3
,求
cos(π+θ)
cosθ[cos(π-θ)-1]
+
cos(θ-2π)
sin(θ-
2
)cos(θ-π)-sin(
2
+θ)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
3
5
,且α∈(
π
2
,π),求:
(1)tanα的值; 
(2)
sinα-4cosα
5sinα+2cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①在△ABC中,若sinA>sinB,則cosA<cosB;
②已知數(shù)列{an}為等差數(shù)列,若m+n+p=q(m,n,p,q∈N*),則有am+an+ap=aq;
③已知數(shù)列{an}、{bn}為等比數(shù)列,則數(shù)列{an+bn}、{an•bn}也為等比數(shù)列;
④若0<x<
π
2
,則函數(shù)f(x)=cos2x-
3
2sin2x
的最大值為1-2
3
;
其中正確的是
 
(填正確說法的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2x+3y+5z=7,2x-1+3y+5z+1=11,則2x+1+3y+5z-1取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知傾角為α的直線l:
x=2+tcosα
y=
3
+tsinα
(t為參數(shù))與曲線C:
x=2cosθ
y=sinθ
(θ為參數(shù))相交于不同兩點(diǎn)A,B若|PA|•|PB|=|PO|2,其中P(2,
3
),則直線l的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+1 在x=-
2
3
與x=1時(shí)都取得極值,
(1)求a,b的值.
(2)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

確定下列符號(hào):(填“<”或“>”)
(1)sin4
 
0;
(2)cos5
 
0; 
(3)tan
4
25
 
0;
(4)tan(-3)
 
0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an=
an-4,n>4
(2-
a
4
)n-a2,n≤4
(N∈N*)為單調(diào)遞增數(shù)列,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案