已知是拋物線的焦點(diǎn),上的兩個(gè)點(diǎn),線段AB的中點(diǎn)為,則的面積等于              

2

解析試題分析:利用點(diǎn)斜式設(shè)過M的直線方程,與拋物線方程聯(lián)立消去y,根據(jù)韋達(dá)定理求得x1+x2和x1x2的表達(dá)式,根據(jù)AB的中點(diǎn)坐標(biāo)求得k,進(jìn)而求得直線方程,求得AB的長(zhǎng)度和焦點(diǎn)到直線的距離,最后利用三角形面積公式求得答案。解:設(shè)過M的直線方程為y﹣2=k(x﹣2),由
,
由題意,于是直線方程為y=x,x1+x2=4,x1x2=0,
,焦點(diǎn)F(1,0)到直線y=x的距離
∴△ABF的面積是×4×=2
故答案為2
考點(diǎn):直線與圓錐曲線的綜合問題
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問題.當(dāng)直線與圓錐曲線相交時(shí) 涉及弦長(zhǎng)問題,常用“韋達(dá)定理法”設(shè)而不求計(jì)算弦長(zhǎng)(即應(yīng)用弦長(zhǎng)公式)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

對(duì)于曲線,給出下面四個(gè)命題:
①曲線不可能表示橢圓;   ②當(dāng)時(shí),曲線表示橢圓;
③若曲線表示雙曲線,則
④若曲線表示焦點(diǎn)在軸上的橢圓,則
其中所有正確命題的序號(hào)為__    _ __

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知F1、F2分別是雙曲線的左、右焦點(diǎn),P為雙曲線上的一點(diǎn),若,且的三邊長(zhǎng)成等差數(shù)列,則雙曲線的離心率是        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

拋物線的焦點(diǎn)為,過焦點(diǎn)傾斜角為的直線交拋物線于,兩點(diǎn),點(diǎn),在拋物線準(zhǔn)線上的射影分別是,若四邊形的面積為,則拋物線的方程為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

在橢圓的焦點(diǎn)為,點(diǎn)p在橢圓上,若,則____   =__    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離為______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

是橢圓的右焦點(diǎn),定點(diǎn)A,M是橢圓上的動(dòng)點(diǎn),則的最小值為                 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知點(diǎn)和圓,是圓的直徑,的三等分點(diǎn),(異于)是圓上的動(dòng)點(diǎn),,,直線交于,則當(dāng)     時(shí),為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖所示,已知是橢圓 的左、右焦點(diǎn),點(diǎn)在橢圓上,線段與圓相切于點(diǎn),且點(diǎn)為線段的中點(diǎn),則橢圓的離心率為     .

查看答案和解析>>

同步練習(xí)冊(cè)答案