設拋物線的頂點在原點,準線方程為x=-1,則拋物線的方程為
 
考點:拋物線的標準方程
專題:圓錐曲線的定義、性質與方程
分析:利用拋物線的簡單性質求解.
解答: 解:∵拋物線的頂點在原點,準線方程為x=-1,
∴拋物線的方程為:y2=4x.
故答案為:y2=4x.
點評:本題考查拋物線的標準方程的求法,是基礎題,解題時要注意拋物線的簡單性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足:an+1=an+2(n∈N*)且a4=9.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)公比為q的等比數(shù)列{bn}滿足:b1=a2-1,q2-(a3+1)q+16=0,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=ax(a>0,且a≠1)
(1)x為何值時,a3x+1>a-2x成立;
(2)若y=ax的反函數(shù)的圖象過點(
1
2
1
4
),求a的值;
(3)函數(shù)y=ax的圖象經(jīng)過怎樣的移動可得到函數(shù)y=ax-1+1的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)滿足f(x)=f(x+2),當x∈[1,3]時,f(x)=2-|x-2|,則( 。
A、f(sin
π
6
)<f(cos
π
6
)
B、f (sin1)>f (cos1)
C、f(cos
3
)<f(sin
3
)
D、f (cos2)>f (sin2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=2(π<α<2π)
(1)求sin2α,cos2α,tan2α的值;
(2)求
2cos2
α
2
-sinα-1
2
sin(α+
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,過橢圓右焦點F作兩條互相垂直的弦AB與CD.當直線AB斜率為0時,|AB|+|CD|=3
2

(Ⅰ)求橢圓的方程;
(Ⅱ)求由A,B,C,D四點構成的四邊形的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,在區(qū)間(0,2)上為增函數(shù)的是(  )
A、y=2-x
B、y=
3
x
C、y=-log 
1
2
x
D、y=-x2+2x+3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A={1,2,3,4,5},B={x∈R|
x+2
x-3
≤0},則A∩B=( 。
A、{1,2}
B、{x|-2≤x<3}
C、{x|0≤x<3}
D、{0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是等差數(shù)列,若a5=log
 
 
2
8,則a4+a6等于(  )
A、6B、8C、9D、16

查看答案和解析>>

同步練習冊答案