求sin220°+cos250°+sin30°sin70°的值.

解析:原式=++sin70°

=1-(cos40°-cos100°)+sin70°

=1-[cos(70°-30°)-cos(70°+30°)]+sin70°

=1-(2sin30°sin70°)+sin70°=1.

點(diǎn)評(píng):遇正弦、余弦的平方,往往要進(jìn)行降次.

sin2α=,cos2α=稱為降次公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知cosA=
3
5

(Ⅰ)求sin2
A
2
-cos(B+C)
的值;
(Ⅱ)若△ABC的面積為4,AB=2,求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan(
π
4
+α)=2,求
1
2sinαcosα+cos2α
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,邊a,b,c的對(duì)角分別為A.B、C,且sin2A+sin2C-sinA•sinC=sin2B
(1)求角B的值;
(2)求2cos2A+cos(A-C)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
π
2
<α<π,且sin(π-α)=
4
5

(1)求
sin(2π+α)tan(π-α)cos(-π-α)
sin(
2
-α)cos(
π
2
+α)
的值.
(2)求
sin(π-α)+cos(-α)
tan(π+α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知方程sin(α-3π)=2cos(α-4π),求
sin(π-α)+5cos(2π-α)
2sin(
2
-α)-sin(-α)
的值;
(2)已知角α的終邊經(jīng)過(guò)點(diǎn)P(4a,-3a)(a≠0),求2sinα+cosα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案