4.設(shè)有某進(jìn)制數(shù)4+4=10,根據(jù)這個(gè)運(yùn)算規(guī)則,十進(jìn)制運(yùn)算3+6的結(jié)果寫成該進(jìn)制為(  )
A.9B.10C.11D.12

分析 觀察已知等式,可得為八進(jìn)制數(shù),進(jìn)而將十進(jìn)制數(shù)轉(zhuǎn)化為八進(jìn)制數(shù)即可得解.

解答 解:∵某進(jìn)制數(shù)4+4=10,
∴根據(jù)這個(gè)運(yùn)算規(guī)則,可知為八進(jìn)制,
∴十進(jìn)制運(yùn)算3+6=9的結(jié)果寫成該進(jìn)制為:11.
故選:C.

點(diǎn)評(píng) 本題主要考查了十進(jìn)制與其它進(jìn)制之間的轉(zhuǎn)化,其中熟練掌握“除k取余法”的方法步驟是解答本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x,x≤0}\\{f(x-3),x>0}\end{array}\right.$,則f(2016)=(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知數(shù)列{an}為等比數(shù)列,前n項(xiàng)和為Sn,若S3S5-${S}_{4}^{2}$=-16,a2a4=32,求S4的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.從一副去掉大小怪的52張撲克牌中:
(1)選出1張方塊,有13種不同選法.
(2)選出2張花色不同的撲克牌,但不能選紅心,507種不同選法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)等比數(shù)列{an}的公比q>1,前n項(xiàng)和為Sn,則$\underset{lim}{n→∞}$$\frac{{S}_{n+2}}{{S}_{n}}$=q2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知各項(xiàng)都為正數(shù)的等比數(shù)列{an}滿足5a1+4a2=a3,且a1a2=a3
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log5an,且Sn為數(shù)列{bn}的前n項(xiàng)和,求數(shù)列的{$\frac{1}{{S}_{n}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知?jiǎng)狱c(diǎn)M在運(yùn)動(dòng)過(guò)程中,總滿足|MF1|+|MF2|=2$\sqrt{2}$,其中F1(-1,0),F(xiàn)2(1,0).
(1)求動(dòng)點(diǎn)M的軌跡E的方程;
(2)斜率存在且過(guò)點(diǎn)A(0,1)的直線l與軌跡E交于A,B兩點(diǎn),軌跡E上存在一點(diǎn)P滿足$\sqrt{2}$$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知a為實(shí)數(shù),f(x)=x3-ax2-4x+4a.
(1)若f'(-1)=0,求a的值及f(x)在[-2,2]上的最值;
(2)若f(x)在(-∞,-2)和[2,+∞)上都是遞增的,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.$\frac{{1+\sqrt{3}tan{{50}°}}}{{\sqrt{1-cos{{100}°}}}}$=2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案