【題目】設(shè)函數(shù)f(x),g(x)在區(qū)間(0,5)內(nèi)導(dǎo)數(shù)存在,且有以下數(shù)據(jù):
x | 1 | 2 | 3 | 4 |
f(x) | 2 | 3 | 4 | 1 |
f′(x) | 3 | 4 | 2 | 1 |
g(x) | 3 | 1 | 4 | 2 |
g′(x) | 2 | 4 | 1 | 3 |
則曲線f(x)在點(diǎn)(1,f(1))處的切線方程是;函數(shù)f(g(x))在x=2處的導(dǎo)數(shù)值是 .
【答案】y=3x﹣1;12
【解析】解:f′(1)=3,f(1)=2,∴曲線f(x)在點(diǎn)(1,f(1))處的切線方程是y=3x﹣1, [f(g(x))]′=f′(g(x))g′(x),x=2時(shí),f′(g(2))g′(2)=3×4=12,
所以答案是y=3x﹣1;12
【考點(diǎn)精析】本題主要考查了基本求導(dǎo)法則的相關(guān)知識(shí)點(diǎn),需要掌握若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線a,b分別在兩個(gè)不同的平面α,β內(nèi).則“直線a和直線b相交”是“平面α和平面β相交”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U={﹣2,0,1,2},集合A={x|x2+x﹣2=0},則UA=( )
A.{﹣2,1}
B.{﹣2,0}
C.{0,2}
D.{0,1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=﹣f(x),則f(2016)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下是某地區(qū)不同身高的未成年男性的體重平均值表
(1)給出兩個(gè)回歸方程:①y=0.4294x﹣25.318 ②y=2.004e0.0197x通過計(jì)算,得到它們的相關(guān)指數(shù)分別是:R12=0.9311,R22=0.998.試問哪個(gè)回歸方程擬合效果最好?
(2)若體重超過相同身高男性平均值的1.2倍為偏胖,低于0.8為偏瘦,那么該地區(qū)某中學(xué)一男生身高為175cm,體重為78kg,他的體重是否正常?
身高/cm | 60 | 70 | 80 | 90 | 100 | 110 |
體重/kg | 6.13 | 7.90 | 9.99 | 12.15 | 15.02 | 17.5 |
身高/cm | 120 | 130 | 140 | 150 | 160 | 170 |
體重/kg | 20.92 | 26.86 | 31.11 | 38.85 | 47.25 | 55.05 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=(x﹣3)3+(x﹣1),數(shù)列{an}是公差不為零的等差數(shù)列,f(a1)+f(a2)+…+f(a7)=14,則a1+a2+…+a7= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)名草《周髀算經(jīng)》曾記載有“勾股各自乘,并而開方除之”,用符號(hào)表示為a2+b2=c2(a,b,c∈N*),我們把a(bǔ),b,c叫做勾股數(shù).下列給出幾組勾股數(shù):3,4,5;5,12,13;7,24,25;9,40,41,以此類推,可猜測(cè)第5組股數(shù)的三個(gè)數(shù)依次是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com