18.已知6tanαsinα=5,α∈(-$\frac{π}{2}$,0),則sinα的值是-$\frac{\sqrt{5}}{3}$.

分析 由已知式子和平方關(guān)系可得cosα,由α的范圍,求出cosα的值為$\frac{2}{3}$,即可求出sinα的值.

解答 解:∵6tanαsinα=5,
∴6sin2α=5cosα,
∴6cos2α+5cosα-6=0
∵α∈(-$\frac{π}{2}$,0),
∴cosα=$\frac{2}{3}$,
∴sinα=-$\frac{\sqrt{5}}{3}$.
故答案為:-$\frac{\sqrt{5}}{3}$.

點(diǎn)評 此題考查了同角三角函數(shù)間的基本關(guān)系,熟練掌握公式及基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=$\frac{x+1}{x-a}$在區(qū)間[1,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍為(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=a(x-\frac{1}{x})-2lnx$,a∈R.
(1)若a=1,判斷函數(shù)f(x)是否存在極值,若存在,求出極值;若不存在,說明理由;
(2)設(shè)函數(shù)$g(x)=-\frac{a}{x}$.若至少存在一個x0∈[1,e],使得f(x0)>g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=x2-x-2,x∈[-3,3],那么任取一點(diǎn)x0∈[-3,3],使f(x0)≤0的概率是( 。
A.1B.$\frac{1}{2}$C.$\frac{4}{7}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{2π+1}{3}$B.$\frac{4π+1}{3}$C.$\frac{2π+3}{3}$D.$\frac{2π+2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線${C_1}:\frac{x^2}{2}-{y^2}=1$與雙曲線${C_2}:\frac{x^2}{2}-{y^2}=-1$,給出下列說法,其中錯誤的是( 。
A.它們的焦距相等B.它們的焦點(diǎn)在同一個圓上
C.它們的漸近線方程相同D.它們的離心率相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知球O是正三棱錐(底面為正三角形,頂點(diǎn)在底面的射影為底面中心)A-BCD的外接球,BC=3,AB=2$\sqrt{3}$,點(diǎn)E在線段BD上,且BD=3BE,過點(diǎn)E作球O的截面,則所得截面圓面積的取值范圍是[2π,4π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,點(diǎn)C在以AB為直徑的圓O上,PA垂直與圓O所在平面,G為△AOC的垂心.
(1)求證:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,點(diǎn)Q在線段PA上,且PQ=2QA,求三棱錐P-QGC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的漸近線將圓x2+y2-2x-4y+4=0平分,則雙曲線的離心率為( 。
A.3B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案