拋物線y=ax2+bx在第一象限內(nèi)與直線x+y=4相切.此拋物線與x軸所圍成的圖形的面積記為S.求使S達(dá)到最大值的a、b值,并求Smax.
a=-1,b=3時,S取得最大值,且.
依題設(shè)可知拋物線為凸形,它與x軸的交點(diǎn)的橫坐標(biāo)分別為x1=0,x2=-b/a,所以(1)
又直線x+y=4與拋物線y=ax2+bx相切,即它們有唯一的公共點(diǎn),
由方程組
得ax2+(b+1)x-4=0,其判別式必須為0,即(b+1)2+16a=0.
于是代入(1)式得:
,;
令S'(b)=0;在b>0時得唯一駐點(diǎn)b=3,且當(dāng)0<b<3時,S'(b)>0;當(dāng)b>3時,S'(b)<0.故在b=3時,S(b)取得極大值,也是最大值,即a=-1,b=3時,S取得最大值,且.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
AB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A、(
| ||||
B、(
| ||||
C、(0,
| ||||
D、(2, 2
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A、(
| ||
B、(-
| ||
C、(0,-
| ||
D、(0,
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com